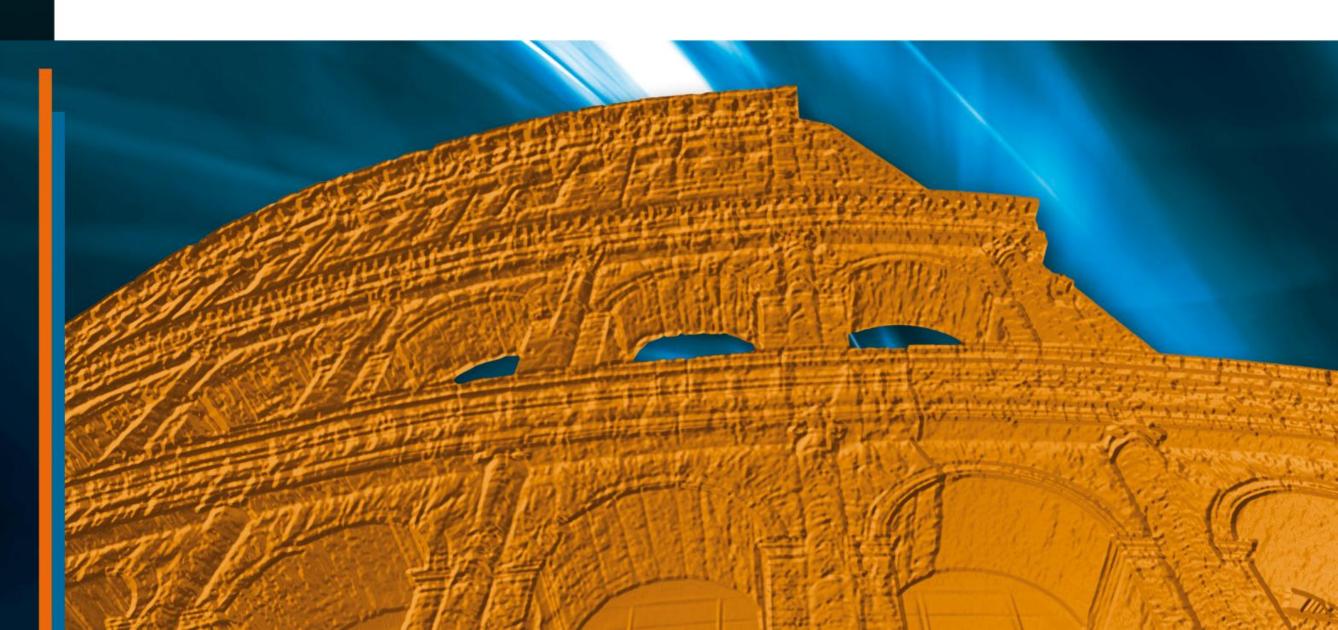
Update degli Studi Practice Changing 2024

Undicesima Edizione

In memoria di Renzo Corvò


ROMA 30-31 gennaio 2025 **Starhotels Metropole**

New evidence and practice changing treatments in breast tumors

Maria Carmen De Santis, MD

mariacarmen.desantis@istitutotumori.mi.it; twitter @MariaCarmenDeS1

Fondazione I.R.C.C.S Istituto Nazionale Tumori di Milano

No Conflict of interest to declare

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Treatment Escalation 》

- DBCG IMN2
- SUPREMO
- NATALEE
- KEYNOTE 522


Treatment Descalation >>

- SENOMAC
- INSEMA
- OPBC-05/ICARO
- IDEA
- EUROPA (Prof. Livi)
- IRMA
- COMET
- RTCHARM

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Radiotherapy to regional nodes in early breast cancer: an individual patient data meta-analysis of 14324 women in 16 trials

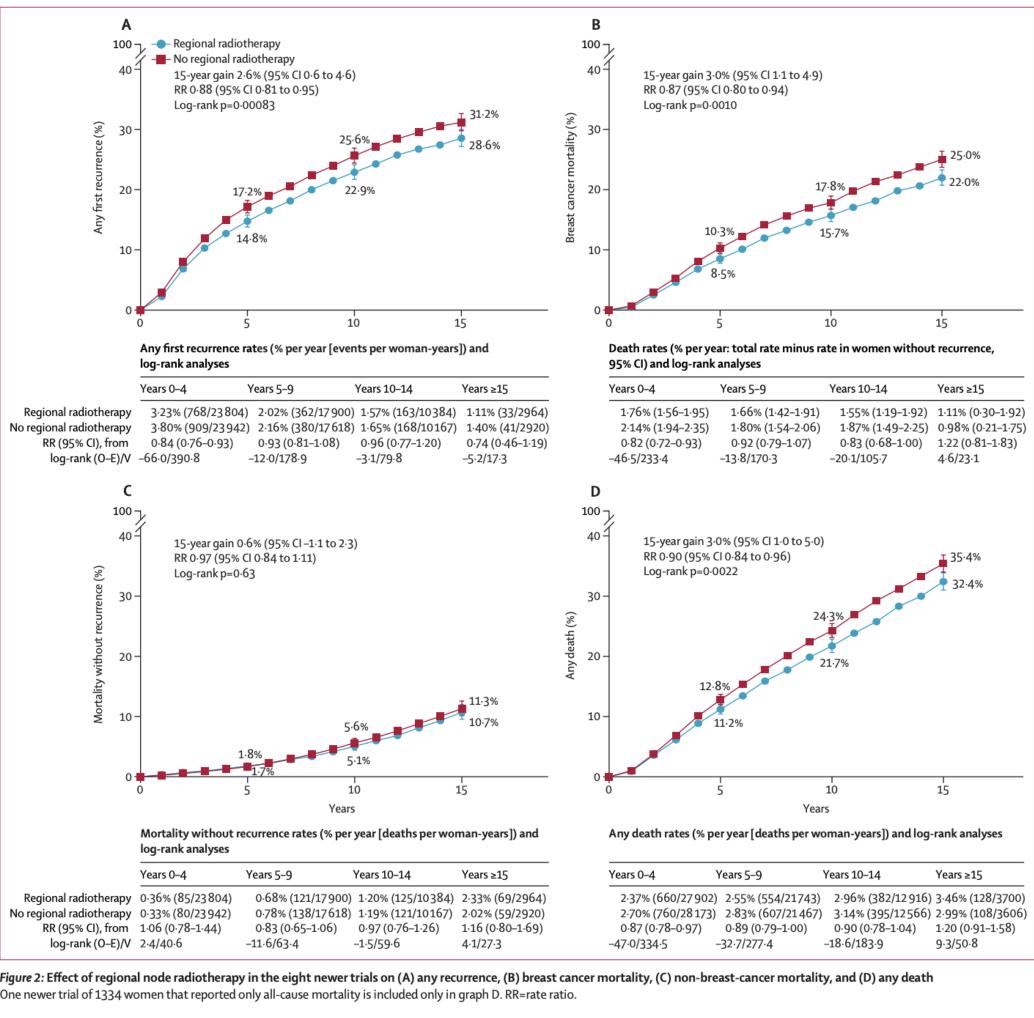
Early Breast Cancer Trialists' Collaborative Group (EBCTCG)*

Newer Trials (1989–2008, 12,167 patients):

- Reduced recurrence (RR 0.88; p=0.0008)
- Reduced breast cancer mortality (RR 0.87; p=0.0010)
- No significant effect on non-breast-cancer mortality
- Reduced all-cause mortality (RR 0.90; p=0.0022)

15-year breast cancer mortality reductions:

- 1.6%: No positive axillary nodes
- 2.7%: 1–3 positive axillary nodes
- 4.5%: 4+ positive axillary nodes


Older Trials (1961–1978, 2,157 patients):

- No reduction in breast cancer mortality (RR 1.04; p=0.55)
- Increased non-breast-cancer mortality (RR 1.42; p=0.00023), primarily after 20 years
- Increased all-cause mortality (RR 1.17; p=0.0067)

ROMA 30-31 GENNAIO 2025

Findings

Update degli Studi Practice Changing 2024

One newer trial of 1334 women that reported only all-cause mortality is included only in graph D. RR=rate ratio.

EBCTCG. Lancet. 2023

Radiotherapy to regional nodes in early breast cancer: an individual patient data meta-analysis of 14324 women in 16 trials

Early Breast Cancer Trialists' Collaborative Group (EBCTCG)*

Interpretation

- Post-1980s trials show significant reductions in breast cancer and all-cause mortality, reflecting advancements in radiotherapy techniques
- Pre-1980s trials highlight increased non-breast-cancer mortality, likely due to outdated RT methods

ROMA 30-31 GENNAIO 2025

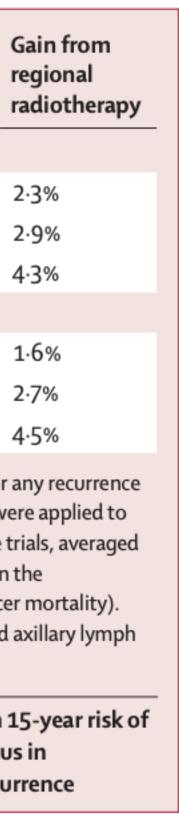
Update degli Studi Practice Changing 2024

pN4+

radiotherapy radiotherapy Any recurrence pN0 19.0% 21.3% 2.3% 28.5% pN1-3 25.6% 2.9% 46.8% pN4+ 51·1% 4.3% Breast cancer mortality pN0 12.5% 1.6% 10.9% pN1-3 20.3% 23.0% 2.7%

40.5%

Regional


No regional

45.0%

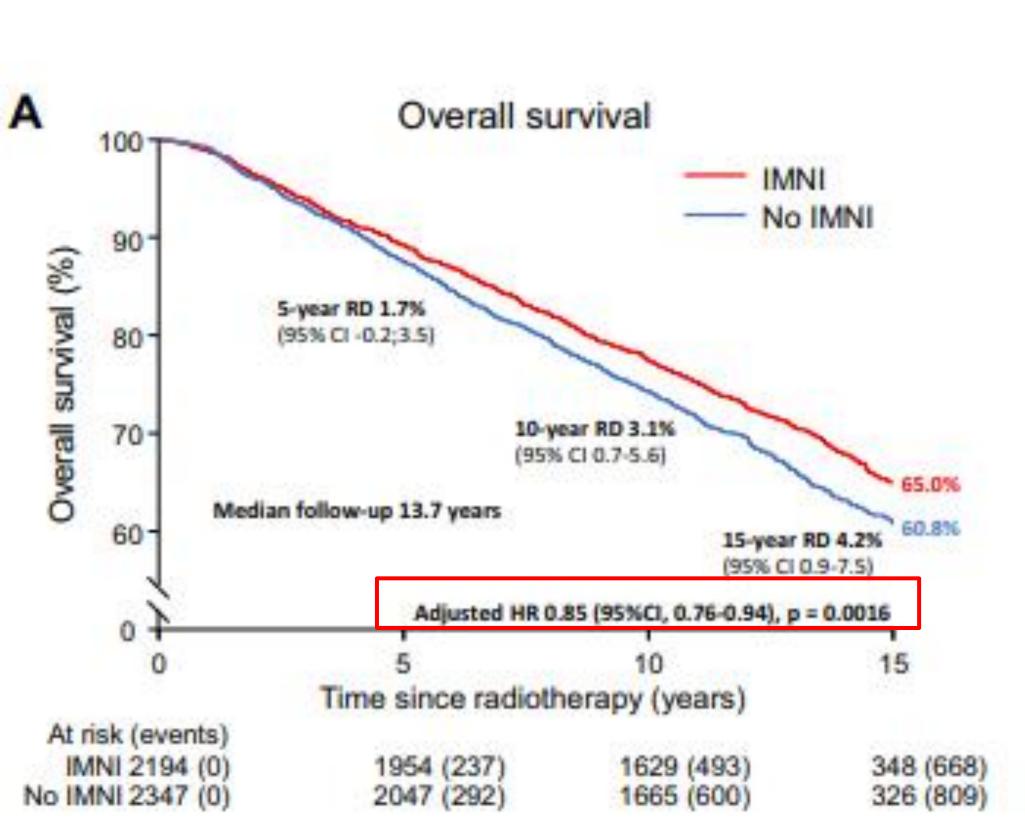
Data are 15-year cumulative risks. The overall rate ratios (RRs) for any recurrence (RR=0.88; figure 3) and breast cancer mortality (0.87; figure 3) were applied to annual rates of any recurrence and breast cancer mortality in the trials, averaged over treatment groups (there was no significant heterogeneity in the proportional reductions [RRs] for any recurrence and breast cancer mortality). pN0=pathologically node negative. pN1-3=one to three involved axillary lymph nodes. pN4+=four or more involved axillary lymph nodes.

Table 2: Absolute effect of regional node radiotherapy on 15-year risk of any recurrence and breast cancer mortality by nodal status in 10833 women in the seven newer trials with data on recurrence

EBCTCG. Lancet. 2023

ROMA 30-31 GENNAIO 2025

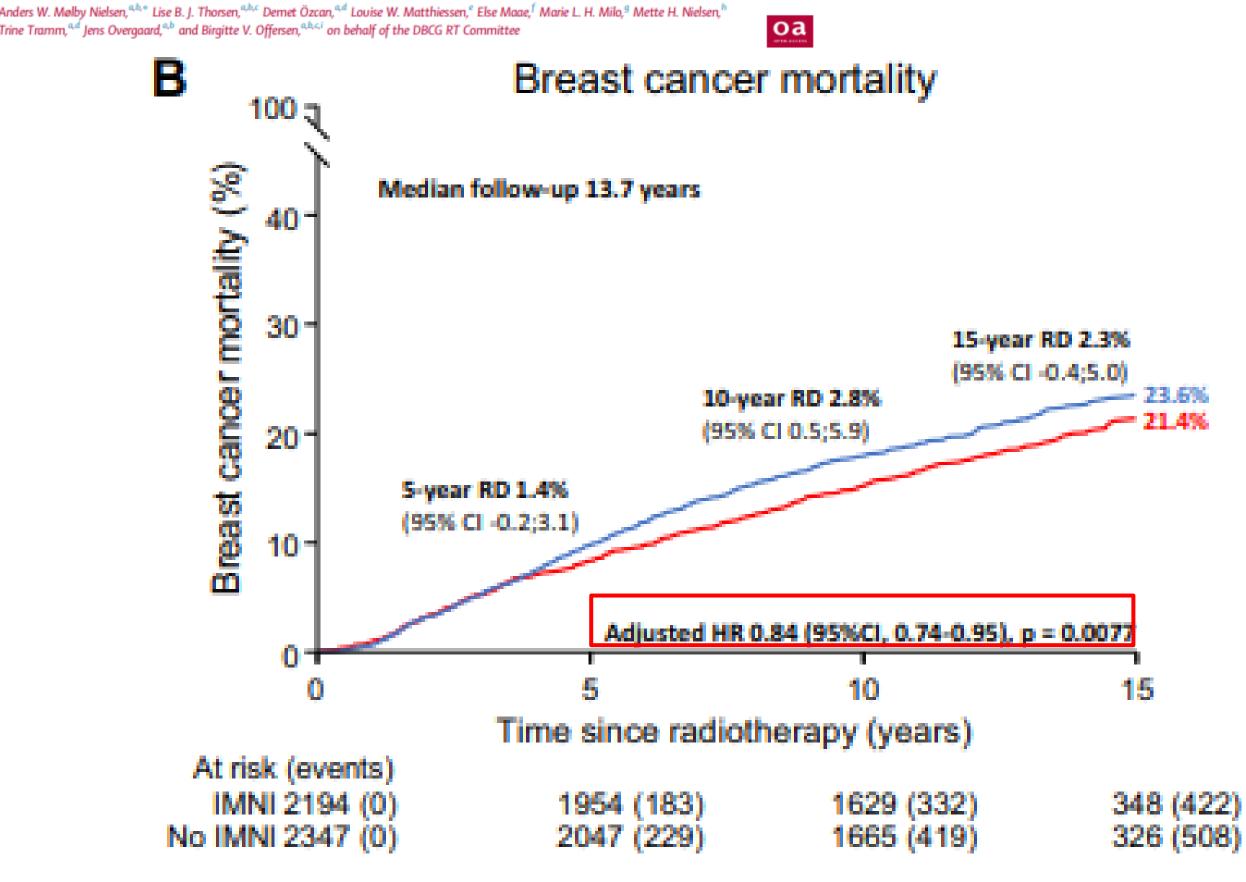
Internal mammary node irradiation in 4541 node-positive breast cancer patients treated with newer systemic therapies and 3D-based radiotherapy (DBCG IMN2): a prospective, nationwide, population-based cohort study


Check for updates

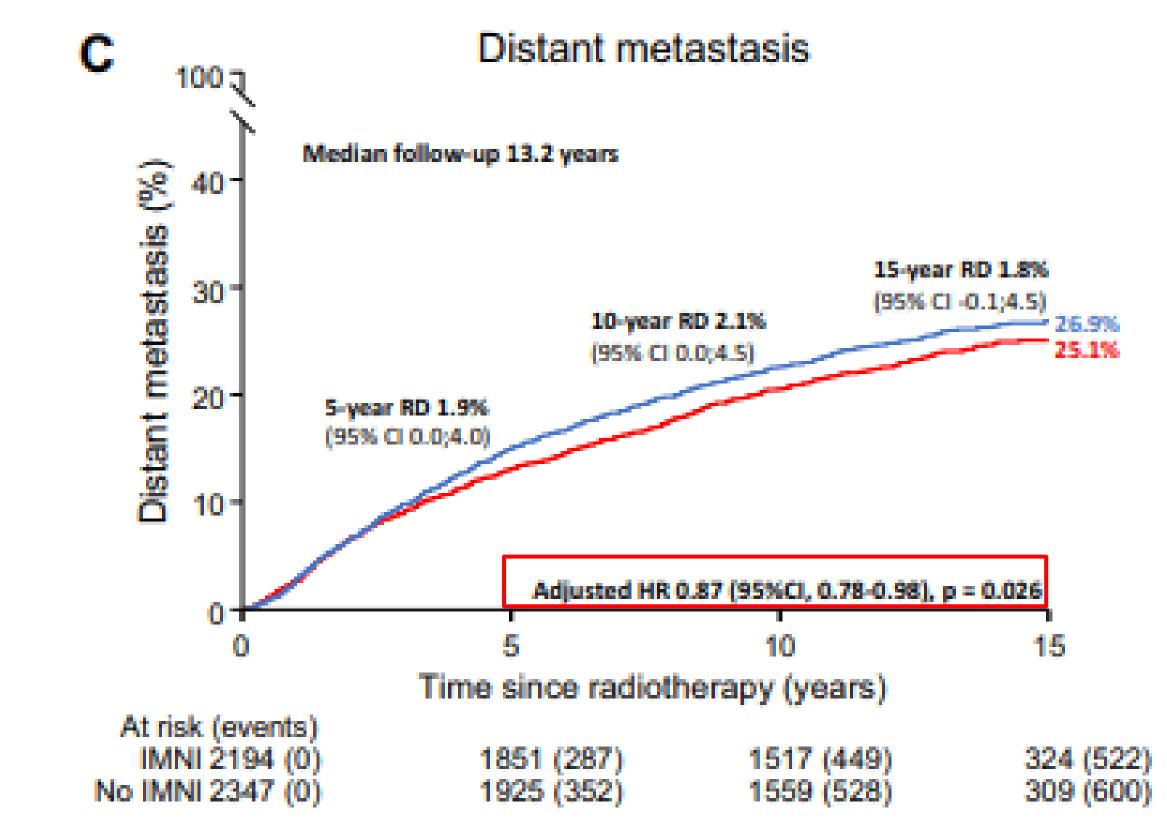
Anders W. Mølby Nielsen, 45, Lise B. J. Thorsen, 45, Dernet Özcan, 44 Louise W. Matthiessen, Else Maae, Marie L. H. Milo, Mette H. Nielsen, Trine Tramm,^{a,d} Jens Overgaard,^{a,b} and Birgitte V. Offersen,^{a,b,c,i} on behalf of the DBCG RT Committee

- 4541 patients were included in the period January 2007–May 2014
- Median age was 59 years
- Among patients receiving chemotherapy, 99.8% were given cyclophosphamide, 90.4% epirubicin, 96.2% taxanes
- The median follow-up was 13.7 years
- Primary endpoint was OS

Update degli Studi Practice Changing 2024



Nielsen A et al. The Lancet Regional Health – Europe 2025

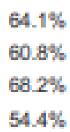

Internal mammary node irradiation in 4541 node-positive breast cancer patients treated with newer systemic therapies and 3D-based radiotherapy (DBCG IMN2): a prospective, nationwide, population-based cohort study

ROMA 30-31 GENNAIO 2025

Nielsen A et al. The Lancet Regional Health – Europe 2025

0	IMNI	No IMNI			0.50/ 01		No IMNI										
Study	n Events n	Events		HR	95% CI	15y OS	15y OS	Number of positive	LN								
Age								1-3	1490	361	1610	451	•	0.8	35	[0.73, 0.97] 72.39	<mark>% 6</mark>
< 35 years	37 7 42			0.63	[0.23, 1.71]			4-9	469	185	512	220	-+-	0.9	2	[0.75, 1.12] 55.39	% 5
35-49 years	486 73 499	122	_	0.57	[0.43, 0.77]	83.2%	72.1%	≥ 10		129	225	145		0.7		[0.59, 0.96] 39.29	
50-59 years	605 151 692	173		0.95	[0.77, 1.19]	72.0%	72.3%	Test for interaction,								[]	
60-69 years	784 279 762	288		0.90	[0.76, 1.06]	59.5%	58.2%	rescior interaction,	p = 0.0	£.							
≥ 70 years	282 165 352	224	-+-	0.86	[0.69, 1.06]	34.6%	27.0%	IHC Subtype									
Test for interaction	, p = 0.063							ER+/HER2+	256	64	268	87	_	0.7	-	[0.51, 0.99] 69.79	4 A
								ER+/HER2-	1596		1680	579		0.8		[0.76, 0.96] 64.8%	
Histological type								ER-/HER2+	118		152	43	•	+ 1.4		[0.98, 2.25] 57.79	
IDC	1875 575 2018			0.84	[0.75, 0.94]	65.1%	61.0%										
ILC	216 81 232	92		0.93	[0.69, 1.26]			ER-/HER2-	197	66	213	89		0.6	99	[0.50, 0.95] 65.3%	/6 D4
Other	103 19 97	26		0.68	[0.37, 1.25]	77.7%	69.2%	Test for interaction,	p = 0.0	21							
Test for interaction	, p = 0.65																
								Tumour Location									
Malignancy grade								Medial or central	921	286	1011	344		0.8	89	[0.76, 1.05] 64.0%	6 63
Grade 1	514 140 551			0.99	[0.78, 1.26]			Lateral	1273	389	1335	471	•	0.8	31	[0.71, 0.93] 65.89	6 58
Grade 2	949 300 1010	377	•	0.83	[0.71, 0.97]			Test for interaction,	p = 0.3	7							
Grade 3	623 216 680	272	+	0.81	[0.68, 0.97]	62.7%	56.2%										
Missing	108 19 106	27		0.66	[0.36, 1.21]	78.9%	71.2%	Tumour size									
Test for interaction	, p = 0.48							0-20 mm	1035	253	1133	297		0.9	2	[0.77, 1.09] 70.99	68 %
								21-50 mm	1075	389	1120	478	•	0.8	80	[0.69, 0.91] 60.19	% 53
Menopausal statu	IS							> 50 mm	84	33	94	41		- 0.9	5	[0.59, 1.52] 55.0%	% 58
Premenopausal	648 104 381	160	- + _	0.64	[0.50, 0.82]	81.8%	73.5%	Test for interaction,	p = 0.4	0							
Postmenopausal	1546 571 1666	656	•	0.90	[0.80, 1.01]	58.6%	55.9%										
Test for interaction	, p = 0.014							Overall					•	0.8	35	[0.76, 0.94] 65.0%	60
Number of positiv	ve LN												Favours IMNI	Favours n	0.11.45		
1-3	1490 361 1610	451	•	0.85	[0.73, 0.97]	72.3%	68.0%						ravours (MINI	avours n		N	
4-9	469 185 512	220		0.92	[0.75, 1.12]	55.3%	51.6%						.25 .5 1	2			
≥ 10	235 129 225	145	-+-	0.75	[0.59, 0.96]	39.2%	31.1%										
Test for interaction	n = 0.52								_		-						

Test for interaction, p = 0.52


ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Nielsen A et al. The Lancet Regional Health – Europe 2025

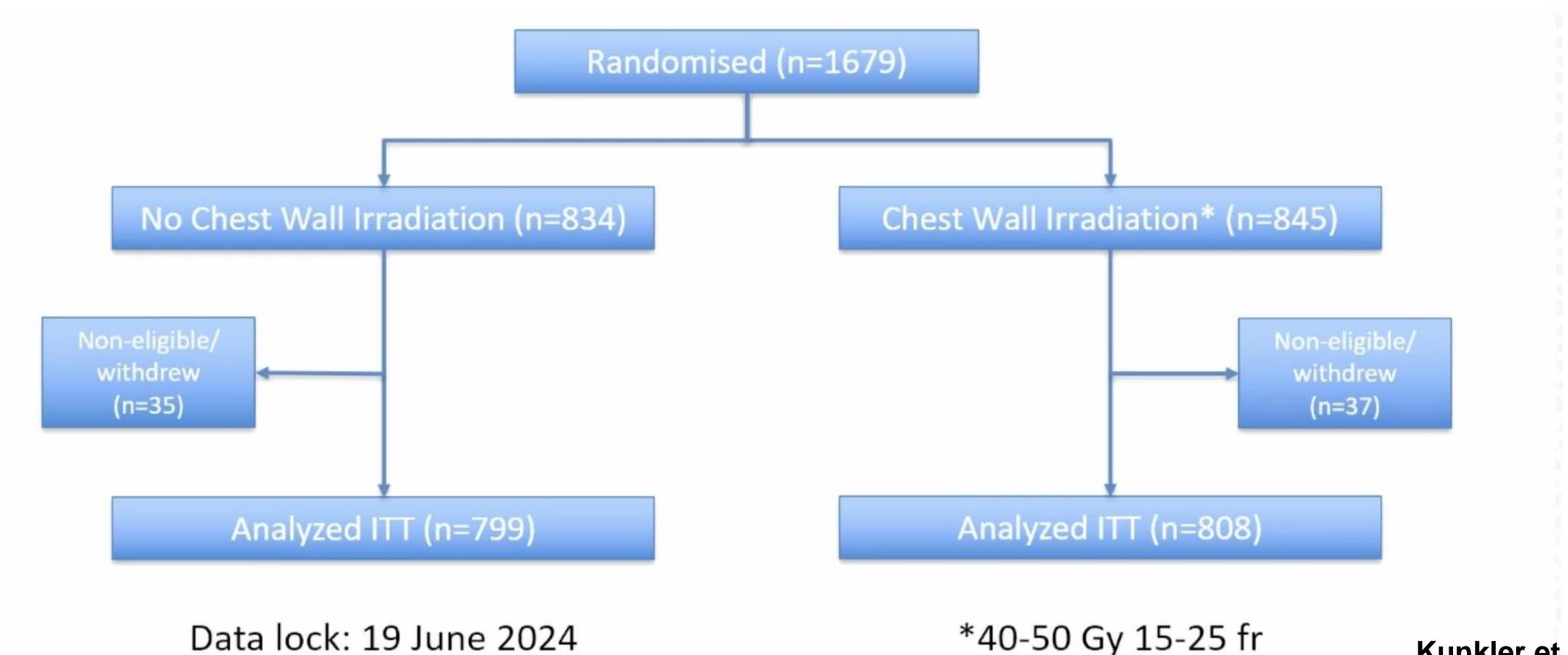
trial on behalf of the SUPREMO trial investigators

Ian Kunkler, FRCR Institute of Genetics and Cancer University of Edinburgh

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

DECEMBER 10–13, 2024 HENRY B. GONZALEZ CONVENTION CENTER • SAN ANTONIO, TX


Does postmastectomy radiotherapy in 'intermediate-risk' breast cancer impact overall survival? 10 year results of the BIG 2-04 MRC randomized

Consort diagram (recruitment 2006-2013)

- pT1N1M0;pT2N1M0 or pT3N0M0 histologically confirmed invasive breast cancer.
- pT2N0M0 if grade 3 and/or lymphovascular invasion
- Undergone simple mastectomy (with minimum of 1mm clear margin) and an axillary staging procedure

ROMA 30-31 GENNAIO 2025

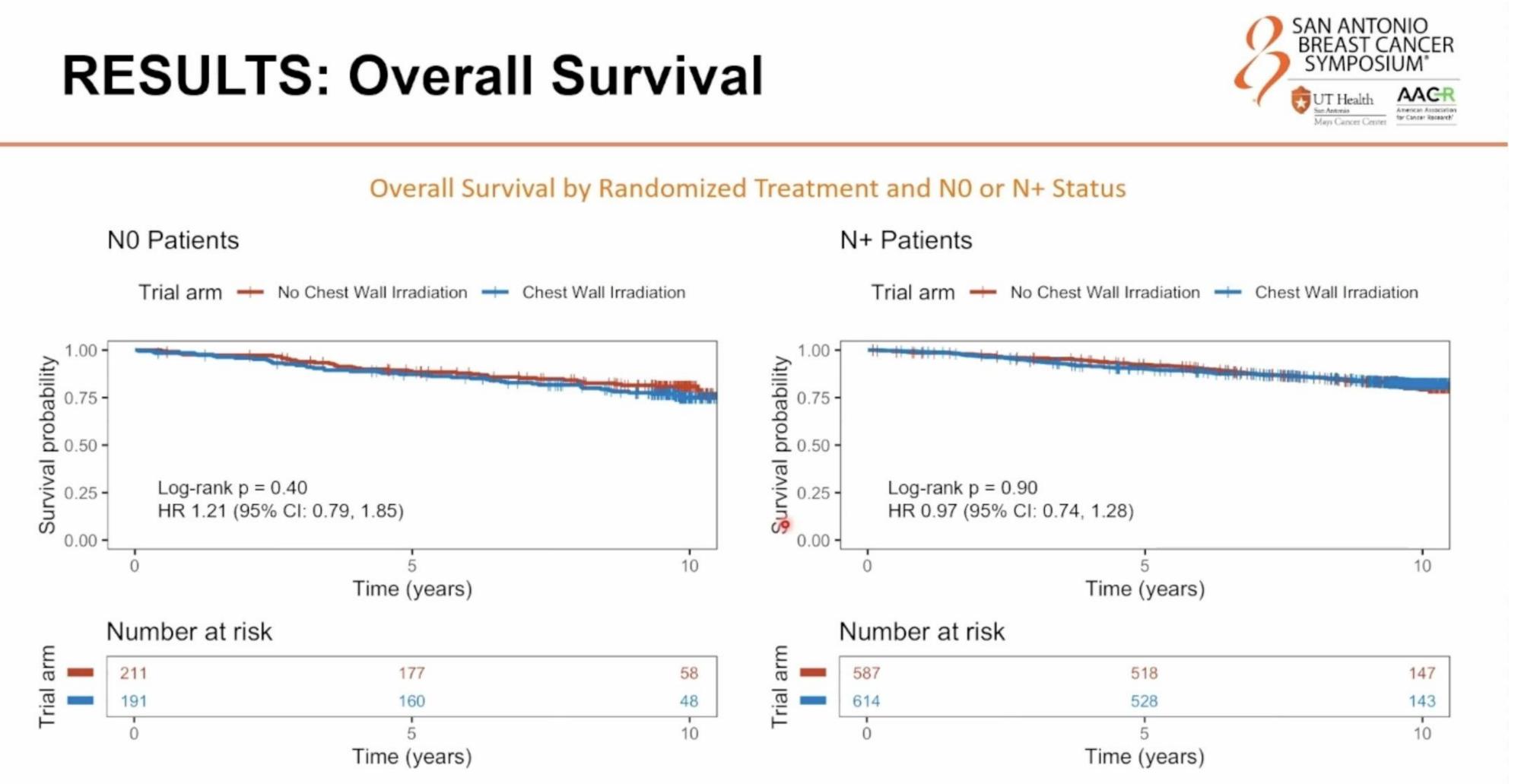
SUPREMO – Study population

- Included high risk NO pT2,N0,M0 if grade 3 +/ LVI (also pT3,N0,M0 – but only 11 patients)
- 65% of patients were either node negative or had only 1 involved LN

Number of Nodes	Number of Patients
0	<mark>25%</mark>
1	<mark>40%</mark>
2	23%
3	12%

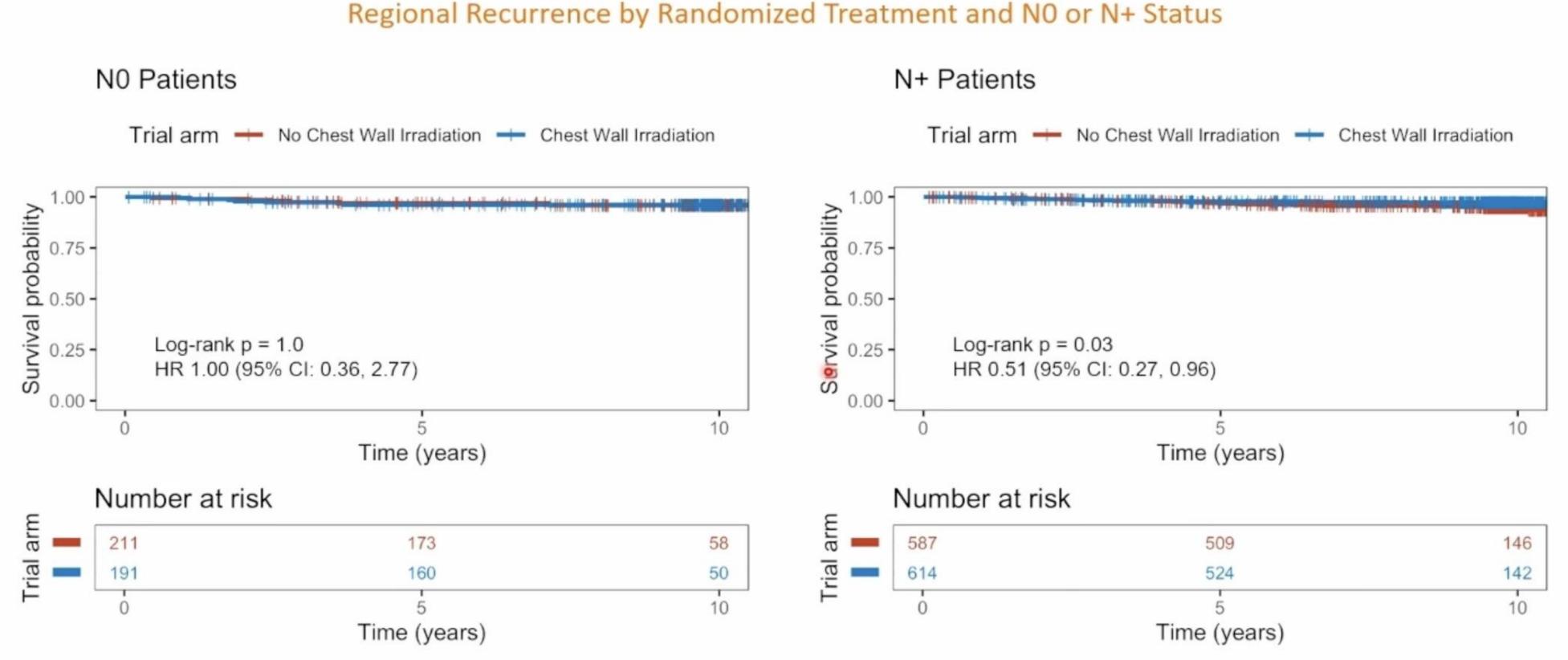
clearance for some of these patients.

ROMA 30-31 GENNAIO 2025



Update degli Studi Practice Changing 2024

If node positive had an axillary node clearance (minimum of 8 nodes removed) – current treatment would be to offer axillary irradiation rather than axillary node

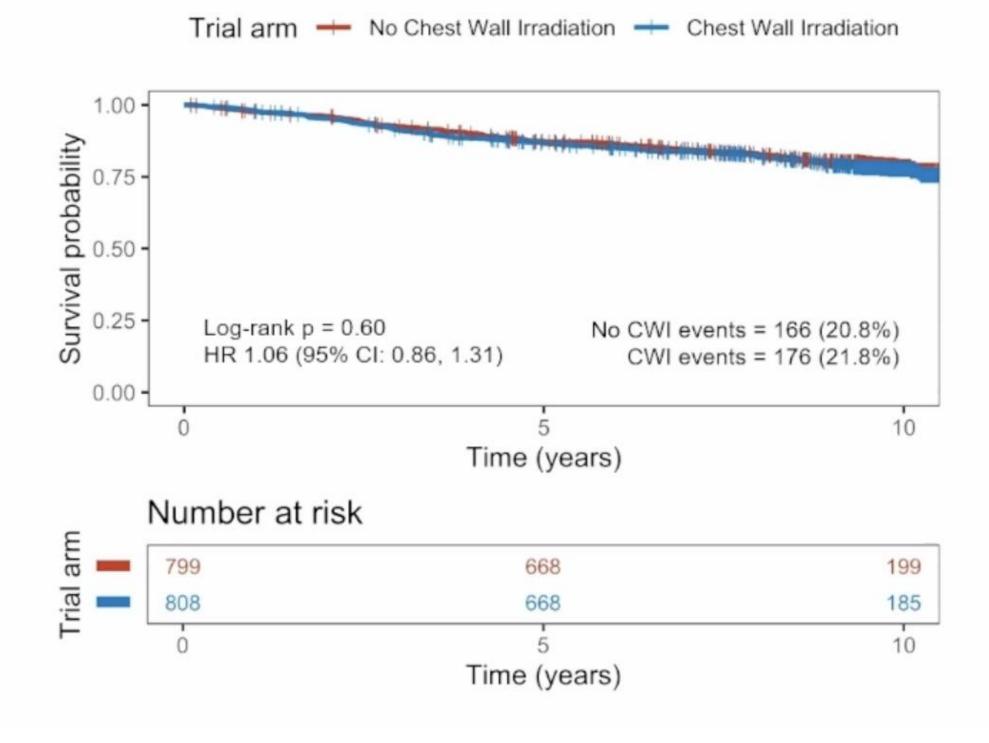


ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

RESULTS: Regional Recurrence

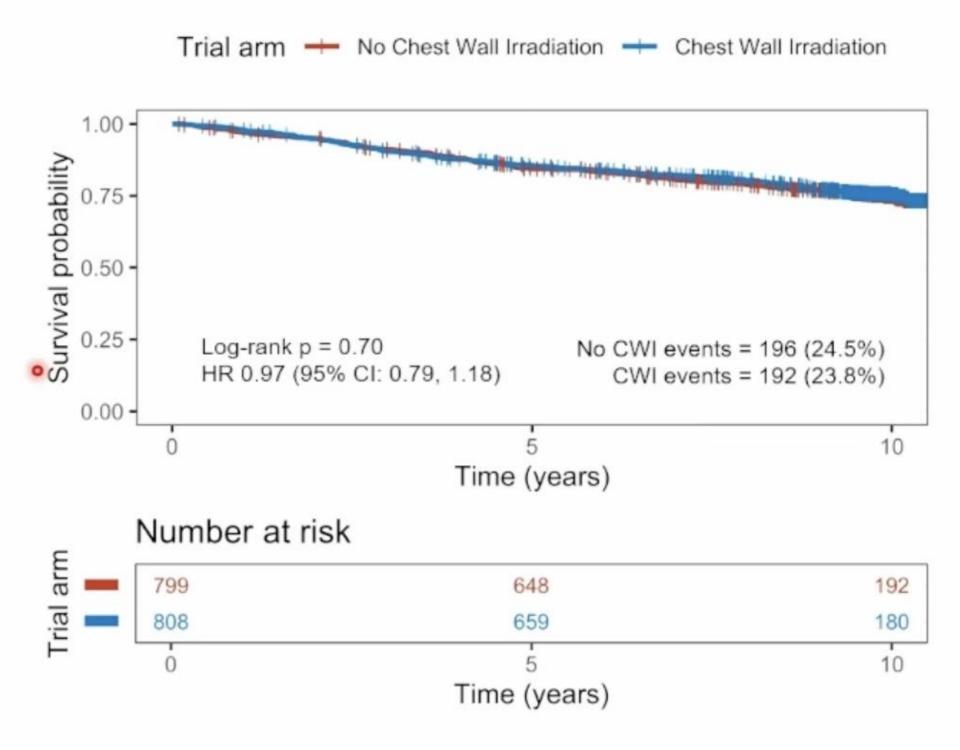
ROMA 30-31 GENNAIO 2025


Update degli Studi Practice Changing 2024

SAN ANTONIO BREAST CANCER SYMPOSIUM AAC T Health for Concer Receard ays Cancer Cervie

RESULTS: Metastasis-free & Disease-free Survival

Kaplan-Meier Curves for ITT Population: Metastasis-free Survival by Randomized Treatment



ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Kaplan-Meier Curves for ITT Population: **Disease-free Survival by Randomized Treatment**

SUPREMO - Summary

- No evidence for PMRT in pT2,N0,M0 if grade 3 +/ LVI
- Benefit from PMRT in women in the node positive group very small only 12% had 3 positive nodes.

For pN1 patients in SUPREMO trial Overall Survival HR was 0.82 (0.63-1.05) in favor of CWI.

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Has not answered the question regarding need for PMRT in pT3,N0,M0

but this cannot be generalised to all patients with 1-3 positive node.

The NEW ENGLAND JOURNAL of MEDICINE

Ribociclib plus Endocrine Therapy in Early Breast Cancer

D. Slamon, O. Lipatov, Z. Nowecki, N. McAndrew, B. Kukielka-Budny, D. Stroyakovskiy, D.A. Yardley, C.-S. Huang, P.A. Fasching, J. Crown, A. Bardia, S. Chia, S.-A. Im, M. Ruiz-Borrego, S. Loi, B. Xu, S. Hurvitz, C. Barrios, M. Untch, R. Moroose, F. Visco, K. Afenjar, R. Fresco, I. Severin, Y. Ji, F. Ghaznawi, Z. Li, J.P. Zarate, A. Chakravartty, T. Taran, and G. Hortobagyi

ROMA 30-31 GENNAIO 2025

ORIGINAL ARTICLE

Slamon D. et al. NEJM. 2024

NATALEE study design

- Adult patients with HR+/HER2- EBC
- Prior ET allowed up to 12 months
- Anatomic stage IIA^a
 - N0 with:
 - Grade 2 and evidence of high risk:
 - Ki-67 ≥20%
 - Oncotype DX Breast Recurrence Score ≥26 or
 - High risk via genomic risk profiling
 - Grade 3
 - N1
- Anatomic stage IIB^a
 - N0 or N1
- Anatomic stage III
 - N0, N1, N2, or N3

N = 5101^b

Randomization stratification Anatomic stage: II vs III Menopausal status: men and premenopausal women vs postmenopausal women Prior (neo)adjuvant chemotherapy: yes vs no Geographic location: North America/Western Europe/Oceania vs rest of world

ctDNA/RNA, circulating tumor DNA/RNA; EBC, early breast cancer; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; HRQoL, health-related quality of life; iDFS, invasive disease-free survival; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; PK, pharmacokinetics; R, randomized; STEEP, Standardized Definitions for Efficacy End Points in adjuvant breast cancer trials. * Enrollment of patients with stage II disease was capped at 40%. 5101 patients were randomized from January 10, 2019, to April 20, 2021. Open-label design. Per investigator choice. 1. Slamon D, et al. ASCO 2023. Oral; abstract LBA500. 2. Slamon DJ, et al. J Clin Oncol. 2019;37(15 suppl). Abstract TPS597. *************

ROMA 30-31 GENNAIO 2025

R 1:1°

Ribociclib

400 mg/day 3 weeks on/1 week off for 3 years

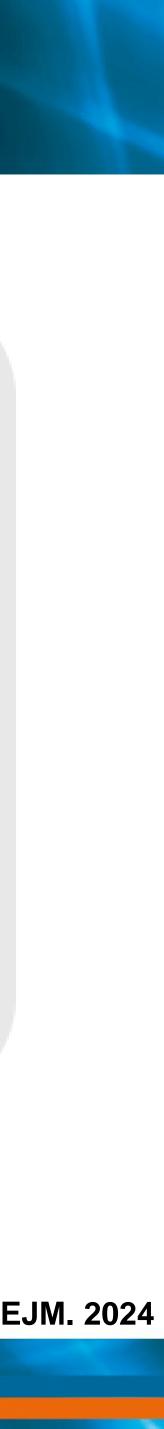
NSAI

Letrozole or anastrozoled for ≥5 years + goserelin in men and premenopausal women

NSAI Letrozole or anastrozole^d for ≥5 years + goserelin in men and premenopausal women

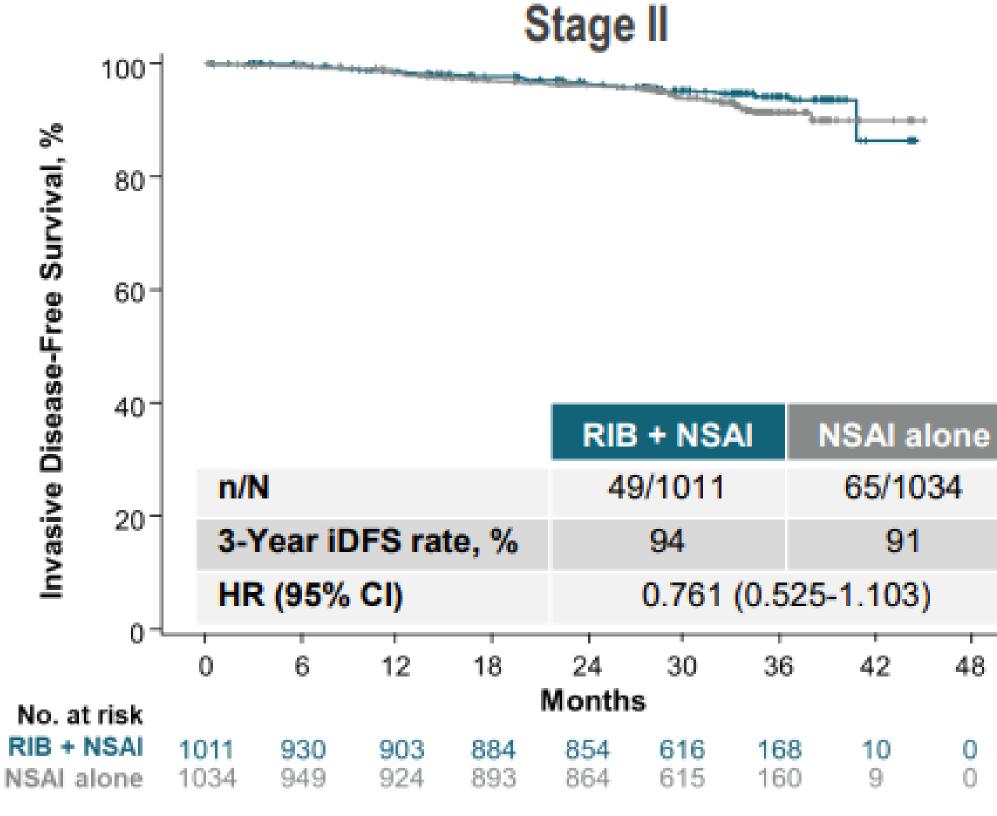
Primary end point

iDFS using STEEP criteria


Secondary end points

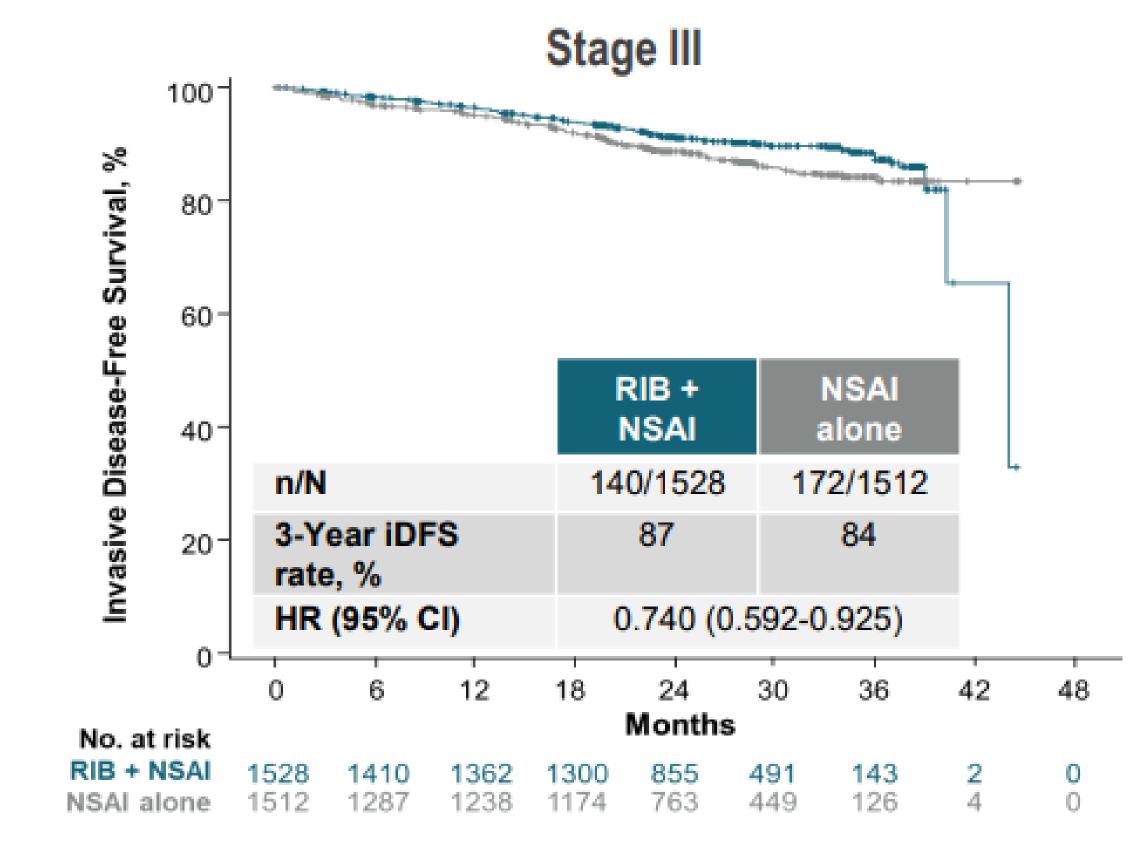
- Recurrence-free survival
- Distant disease-free survival
- OS
- HRQoL
- Safety and tolerability
- PK

Exploratory end points


- Locoregional recurrence-free survival
- Gene expression and alterations in tumor ctDNA/ctRNA samples

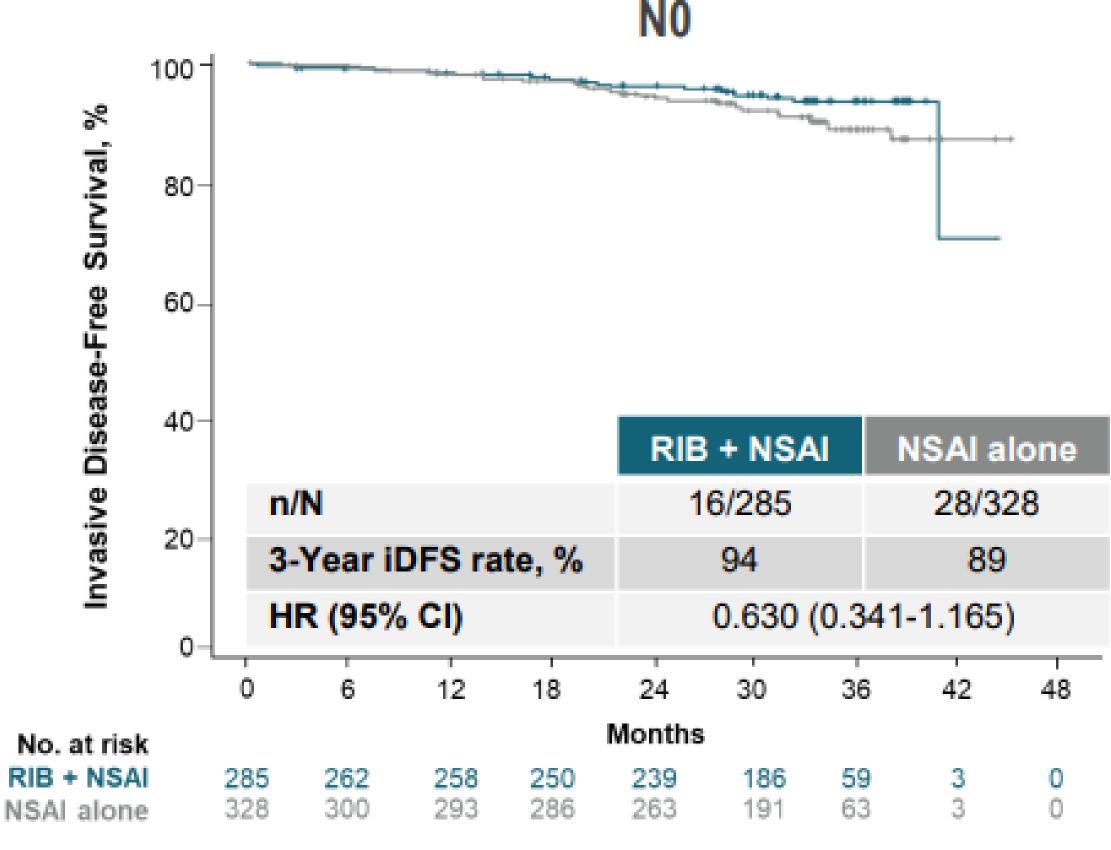
Slamon D. et al. NEJM. 2024

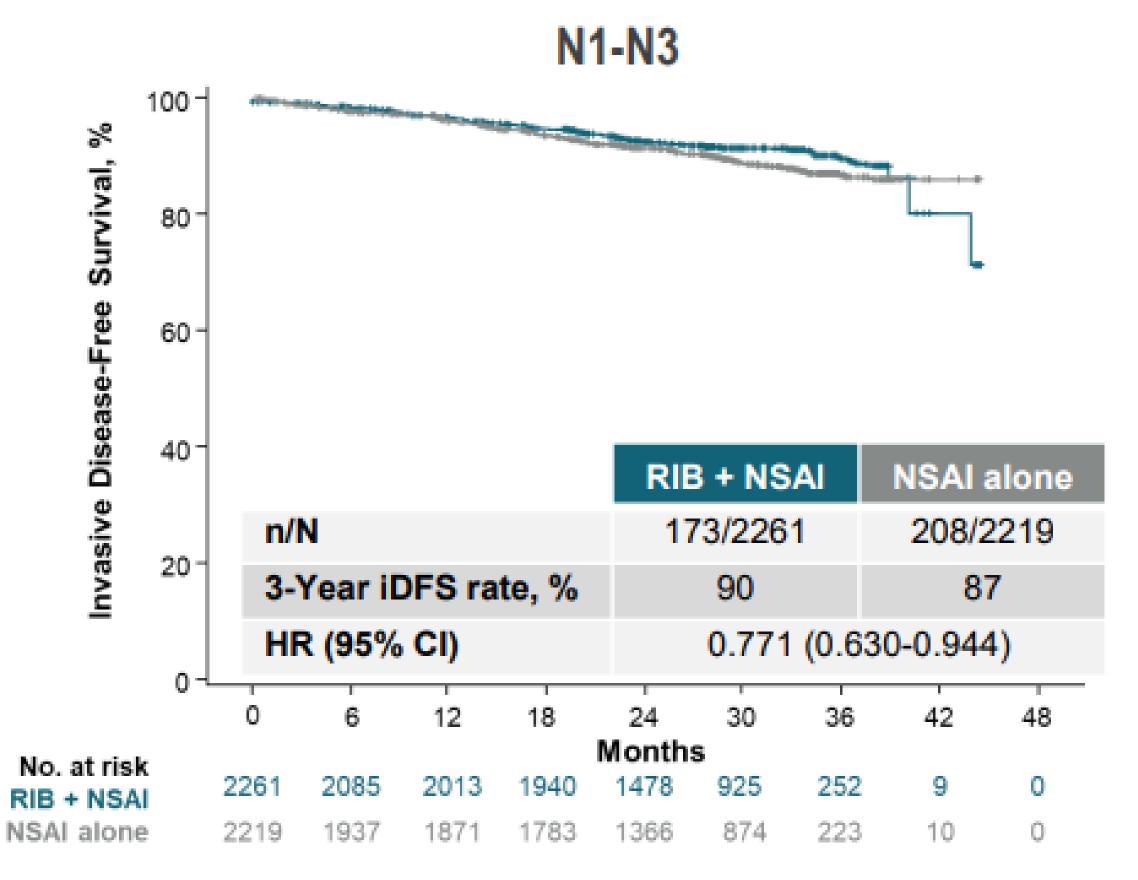
NATALEE iDFS by anatomic stage


Consistent iDFS benefit with ribociclib + NSAI in patients with stage II or III disease

iDFS, invasive disease-free survival; NSAI, nonsteroidal aromatase inhibitor; RIB, ribociclib.

ROMA 30-31 GENNAIO 2025


Update degli Studi Practice Changing 2024


NATALEE iDFS by nodal status

Ribociclib + NSAI prolonged iDFS regardless of nodal status

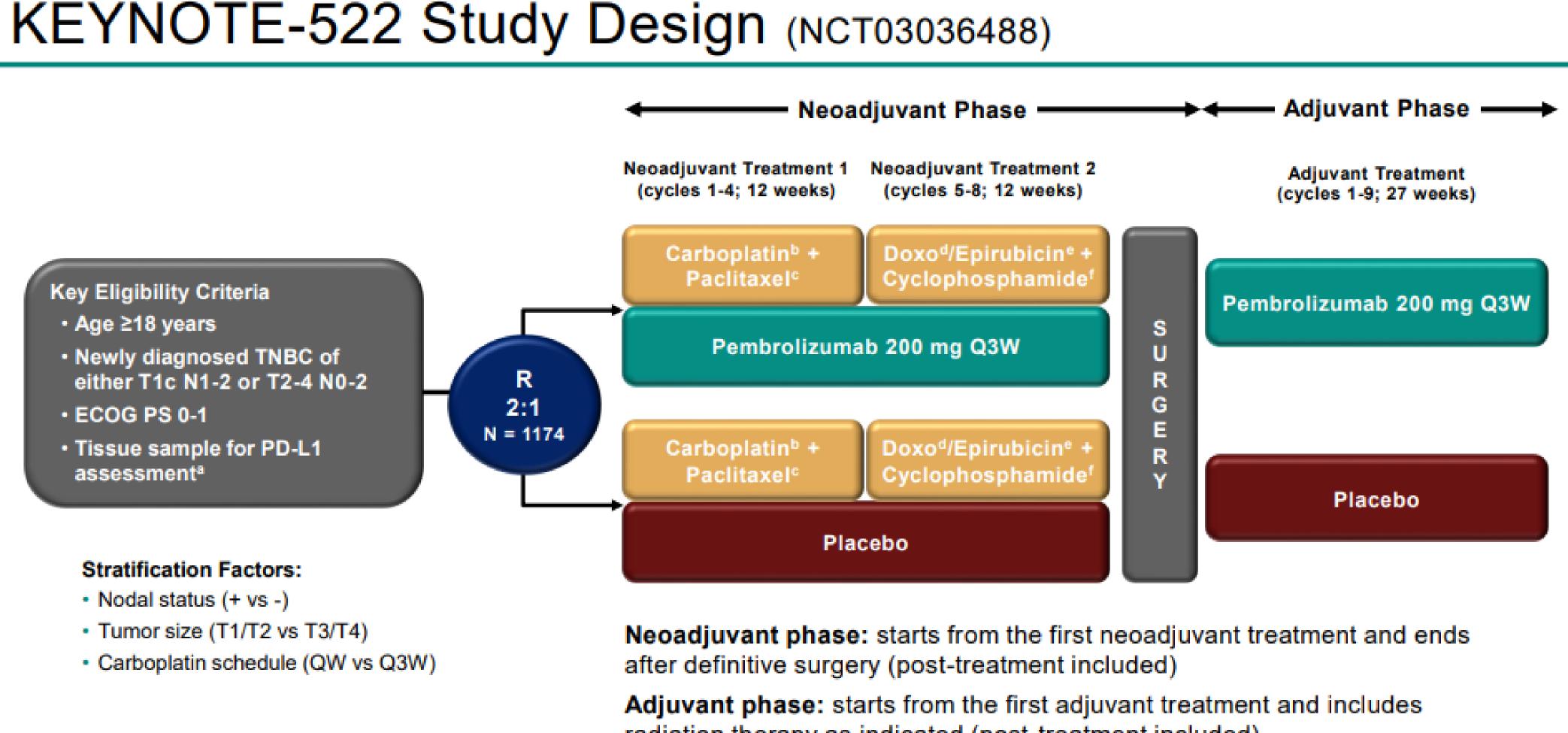
iDFS, invasive disease-free survival; NSAI, nonsteroidal aromatase inhibitor; RIB, ribociclib.

Conclusions

- The iDFS benefit with ribociclib + NSAI across clinically relevant patient subgroups was generally consistent with that observed in the ITT population of NATALEE, suggesting that the benefit is not driven by any particular subgroup
- iDFS benefit was observed with ribociclib + NSAI over NSAI alone regardless of disease stage, nodal involvement, menopausal status, age, and Ki-67 score
- The control arm of NATALEE confirms that the patient population is at risk of recurrence, ٠ including those with N0 and stage II disease

These data reinforce previously reported results which showed significantly lowered risk of recurrence with ribociclib + NSAI compared with NSAI alone across a broad population of patients with stage II and III HR+/HER2- early breast cancer

iDFS, invasive disease-free survival; ITT, intent-to-treat; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; NSAI, nonsteroidal aromatase inhibitor.

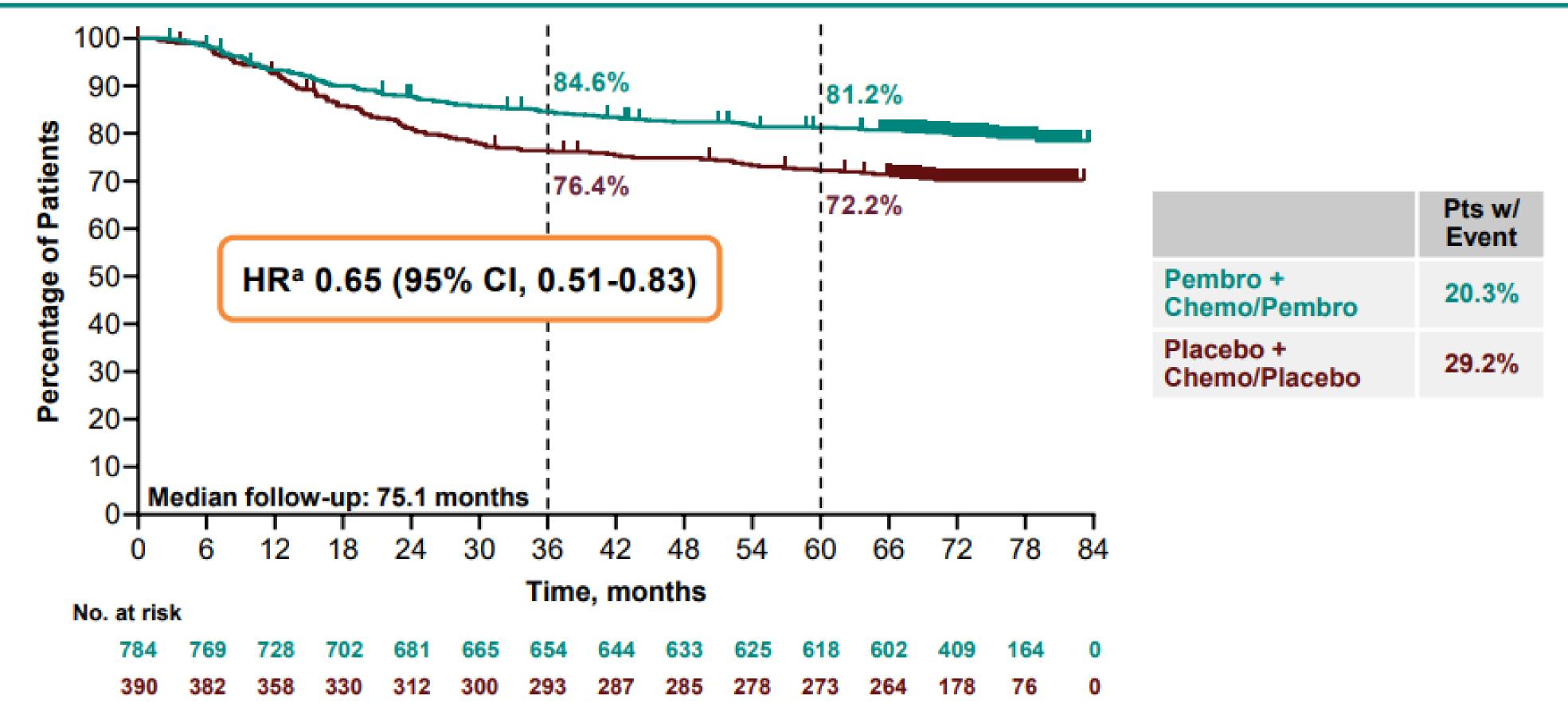

Decennale di HIGHLIGHTS in RADIOTERAPIA BARCELONA

Neoadjuvant Pembrolizumab or Placebo + Chemotherapy Followed by Adjuvant Pembrolizumab or Placebo for High-Risk Early-Stage Triple-Negative Breast Cancer: Overall Survival Results from the Phase 3 KEYNOTE-522 Study

Peter Schmid,¹ Javier Cortes,² Rebecca Dent,³ Heather McArthur,⁴ Lajos Pusztai,⁵ Sherko Kümmel,⁶ Carsten Denkert,⁷ Yeon Hee Park,⁸ Rina Hui,⁹ Nadia Harbeck,¹⁰ Masato Takahashi,¹¹ Seock-Ah Im,¹² Michael Untch,¹³ Peter A. Fasching,¹⁴ Fatima Cardoso,¹⁵ Jing Zhao,¹⁶ Xuan Zhou,¹⁶ Konstantinos Tryfonidis,¹⁶ Gursel Aktan,¹⁶ Joyce O'Shaughnessy¹⁷

¹Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University London, London, UK; ²International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain; Medical Scientia Innovation Research (MedSIR), Barcelona, Spain; Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain; ³National Cancer Centre Singapore, Duke – National University of Singapore Medical School, Singapore; ⁴University of Texas Southwestern Medical Center, Dallas, TX, USA; 5Yale School of Medicine, Yale Cancer Center, New Haven, CT, USA; 6Breast Unit, Kliniken Essen-Mitte, Essen, Germany and Charité - Universitätsmedizin Berlin, Department of Gynecology with Breast Center, Berlin, Germany; ⁷Institute of Pathology, Philipps-University Marburg and University Hospital Marburg, Marburg, Germany; 8Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; 9Westmead Breast Cancer Institute, Westmead Hospital and the University of Sydney, Sydney, NSW, Australia and Centre of Cancer Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong; ¹⁰Breast Center, Dept. OB&GYN, LMU University Hospital, Munich, Germany; ¹¹Hokkaido University Hospital, Sapporo, Japan; 12Seoul National University Hospital, Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; ¹³Breast Cancer Center, Helios Klinikum Berlin-Buch, Berlin, Germany; ¹⁴University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; 15Breast Unit, Champalimaud Clinical Center/ Champalimaud Foundation, Lisbon, Portugal; 16Oncology, Merck & Co., Inc., Rahway, NJ, USA; ¹⁷Baylor University Medical Center, Texas Oncology, Sarah Cannon Research Institute, Dallas, TX, USA

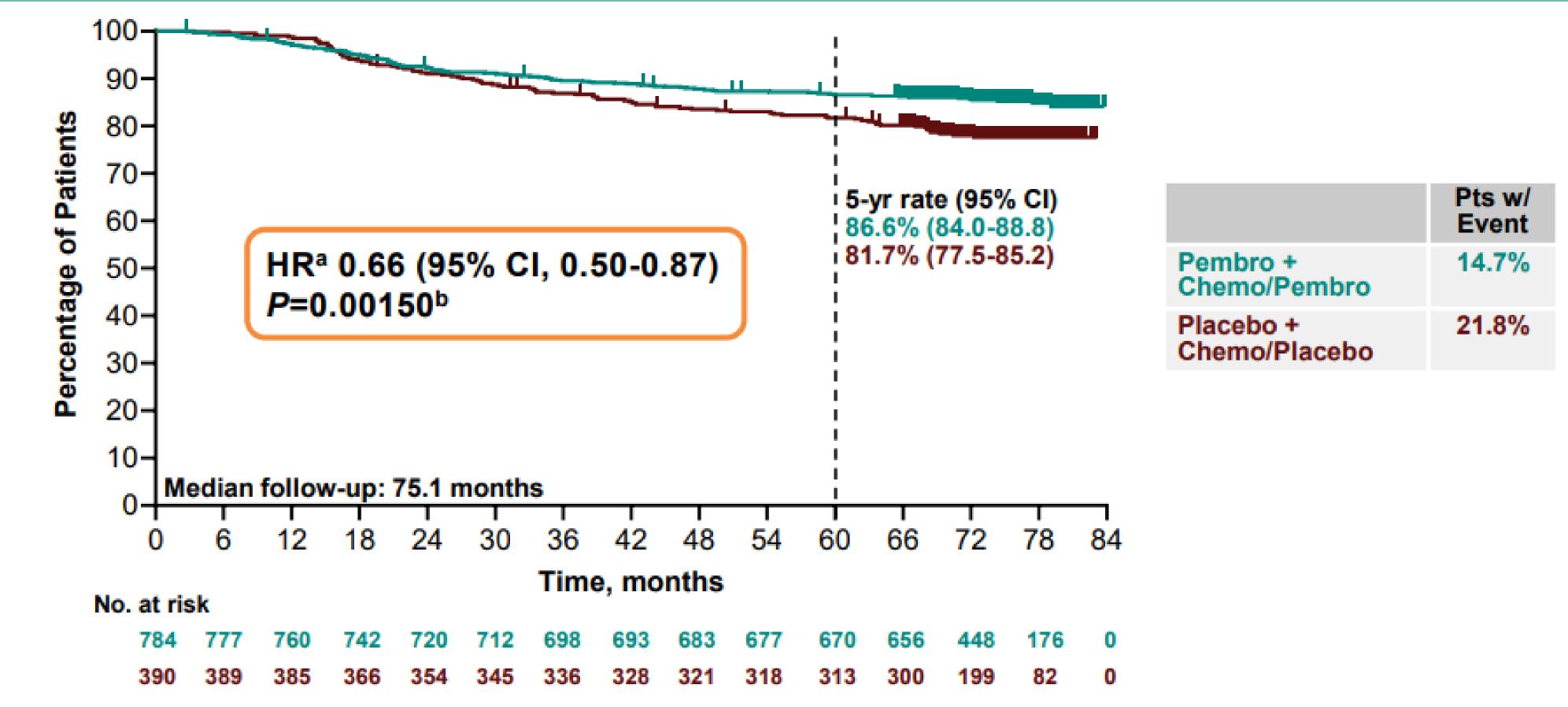
*Must consist of at least 2 separate tumor cores from the primary tumor. Carboplatin dose was AUC 5 Q3W or AUC 1.5 QW. Paclitaxel dose was 80 mg/m² QW. Doxorubicin dose was 60 mg/m² Q3W. Schmid P. et al. NEJM. 2020 Epirubicin dose was 90 mg/m² Q3W. ¹Cyclophosphamide dose was 600 mg/m² Q3W.


ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

radiation therapy as indicated (post-treatment included)

Updated Event-Free Survival


"Hazard ratio (CI) analyzed based on a Cox regression model with treatment as a covariate stratified by the randomization stratification factors. Data cutoff date: March 22, 2024.

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

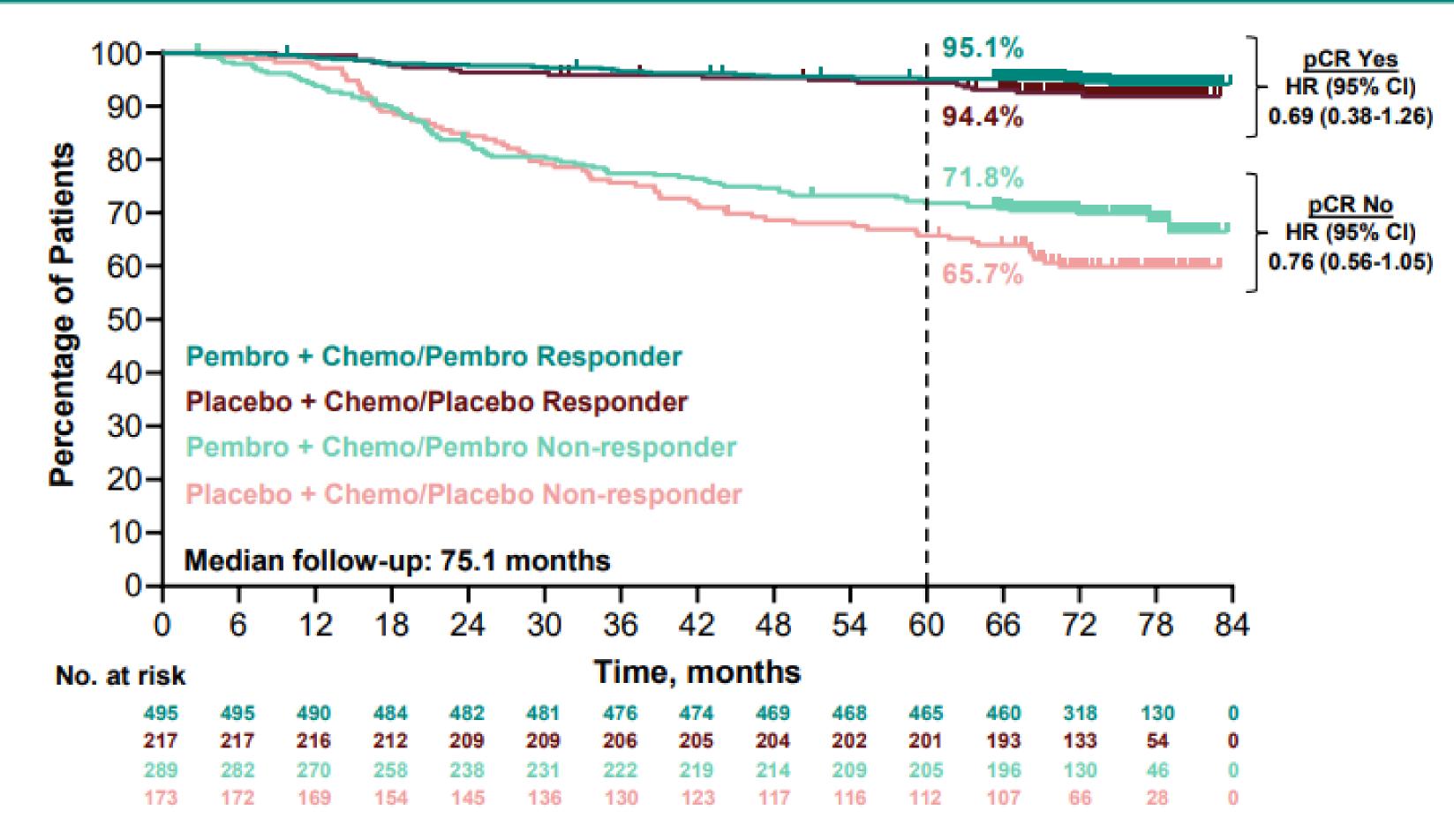
Key Secondary Endpoint: Overall Survival

*The unstratified piecewise HR was 0.87 (95% CI, 0.57-1.32) before the 2-year follow-up and 0.51 (95% CI, 0.35-0.75) afterwards. The weighted average HR with weights of number of events before and after 2-year follow-up was 0.66. With 200 events (67.3% information fraction), the observed P-value crossed the prespecified nominal boundary of 0.00503 (1-sided) at this interim analysis. Data cutoff date: March 22, 2024.

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

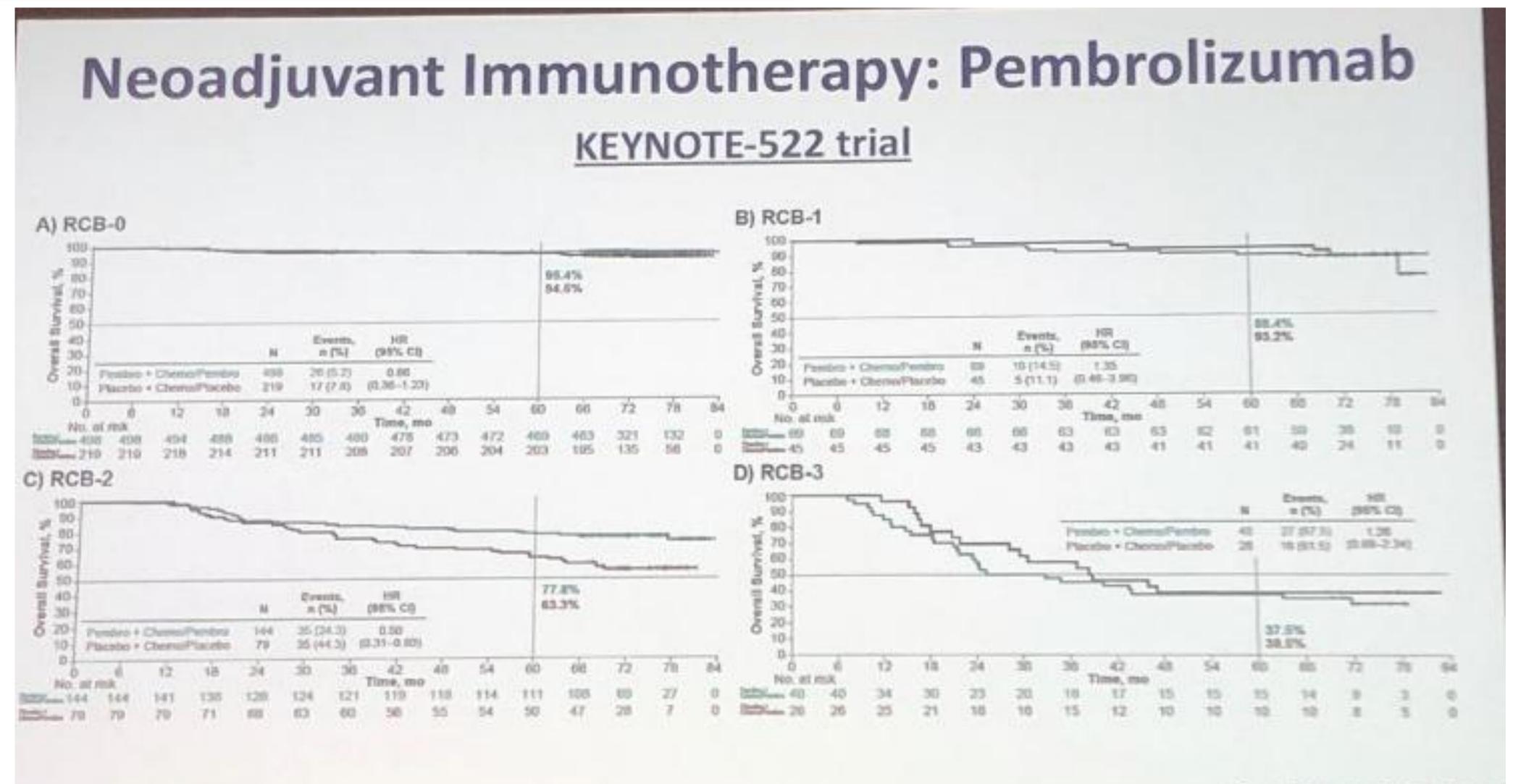
Overall Survival in Patient Subgroups


Subgroup -----Overall Nodal status Positive Negative Tumor size T1/T2 T3/T4 Carboplatin schedule Every 3 weeks Weekly PD-L1 status CPS ≥1 CPS <1 Age category _8-<65 years ≥65 years^a 0.1 Favors Favors Placebo + Pembro + Chemo/Placebo Chemo/Pembro

For overall population and PD-L1 subgroups, analyses based on Cox regression model with Efron's method of tie handling with treatment as a covariate and stratified by nodal status (positive vs negative), tumor size (T1/T2 vs T3/T4), and frequency of carboplatin (once weekly vs once every 3 weeks); for other subgroups, analysis based on unstratified Cox model. "Based on the small sample size and few events, results should be interpreted with caution. Data cutoff date: March 22, 2024.

No. Events/No. Patients (%)								
Pembro + Chemo/Pembro	Placebo + Chemo/Placebo	Hazard Ratio (95% CI)						
115/784 (14.7)	85/390 (21.8)	0.66 (0.50 to 0.87)						
78/408 (19.1)	56/196 (28.6)	0.65 (0.46 to 0.91)						
37/376 (9.8)	29/194 (14.9)	0.65 (0.40 to 1.05)						
54/580 (9.3)	51/290 (17.6)	0.51 (0.35 to 0.75)						
61/204 (29.9)	34/100 (34.0)	0.88 (0.58 to 1.34)						
46/334 (13.8)	36/167 (21.6)	0.63 (0.41 to 0.97)						
68/444 (15.3)	49/220 (22.3)	0.67 (0.46 to 0.96)						
92/656 (14.0)	62/317 (19.6)	0.70 (0.51 to 0.97)						
23/128 (18.0)	23/69 (33.3)	0.51 (0.28 to 0.91)						
93/700 (13.3)	72/342 (21.1)	0.62 (0.45 to 0.84)						
22/84 (26.2)	13/48 (27.1)	0.96 (0.48 to 1.91)						
10								

Overall Survival by Pathologic Complete Response (yp T0/Tis ypN0)



This is a non-randomized subgroup analysis based on the post-treatment outcome of pCR and HRs should therefore be interpreted with caution. Data cutoff date: March 22, 2024.

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Dent R et al, SABCS 2024

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

APRIL 4, 2024

VOL. 390 NO. 13

Omitting Axillary Dissection in Breast Cancer with Sentinel-Node Metastases

J. de Boniface, T. Filtenborg Tvedskov, L. Rydén, R. Szulkin, T. Reimer, T. Kühn, M. Kontos, O.D. Gentilini, R. Olofsson Bagge, M. Sund, D. Lundstedt, M. Appelgren, J. Ahlgren, S. Norenstedt, F. Celebioglu, H. Sackey, I. Scheel Andersen, U. Hoyer, P.F. Nyman, E. Vikhe Patil, E. Wieslander, H. Dahl Nissen, S. Alkner, Y. Andersson, B.V. Offersen, L. Bergkvist, J. Frisell, and P. Christiansen, for the SENOMAC Trialists' Group*

- Between January 2015 and December 2021, a total of 2766 were randomized with one or two sentinel-node macrometastases.
- Adjuvant treatment and radiation therapy were used in accordance with national guidelines.
- The primary endpoint was OS ullet
- The median follow-up was 46.8 months
- Postoperative radiation therapy targeting regional lymphnodes was done in 89.9% in the sentinel-node biopsy-only group.
- One third of the patients had extracapsular extension in the sentinel-node biopsy sample.

Characteristic Age Mean - yr Median (range) - yr Distribution — no. (%) <40 yr 40-49 yr 50-64 yr 65-74 yr ≡75 γr Tumor size — mm^{*} Mean Median (range) Tumor stage — no. (%) 1 Π. T2 T3 No. of removed sentinel lymp 1 or 2 3 or 4 54. Mean Median (range) No. of sentinel lymph-node n No. of axillary metastases Mean Median (range) Type of breast surgery — no. Breast-conserving surger Mastectomy Tumor histologic type — no. Invasive carcinoma, no si Lobular carcinoma Other Nottingham histologic grade Grade 1 Grade 2 Grade 3 **Missing data**

Table 1. Characteristics of the

ROMA 30-31 GENNAIO 2025

e Patients and Tumors (Per-Prote	ocol Population).º	
	Sentinel-Node Biopsy Only (N=1335)	Completion Axillary-Lymph- Node Dissection (N = 1205)
	61.0±12.0	60.9±11.7
	61 (20-94)	61 (34-90)
	37 (2.8)	32 (2.7)
	220 (16.5)	194 (16.1)
	549 (41.1)	483 (40.1)
	334 (25.0)	342 (28.4)
	195 (14.6)	154 (12.8)
	24.4±15.5	24.2±16.9
	20 (0.2-155)	20 (1-155)
	710 (53.2)	651 (54.0)
	552 (41.3)	480 (39.8)
	73 (5.5)	74 (6.1)
ph nodes — no. (%)		
	934 (70.0)	856 (71.0)
	349 (26.1)	303 (25.1)
	52 (3.9)	46 (3.8)
	2.1±1.2	2.1±1.2
	2 (1-11)	2 (1-9)
nacrometastases — no. (%)		
	1143 (85.6)	1008 (83.7)
	192 (14.4)	197 (16.3)
	1.3±0.5	2.3±3.0
	1 (1-5)	1 (1-42)
(%)		
1	845 (63.3)	775 (64.3)
	490 (36.7)	430 (35.7)
(%)		an di
pecial type	997 (74.7)	939 (77.9)
	278 (20.8)	226 (18.8)
	60 (4.5)	40 (3.3)
— no. (%)§		
	243 (18.2)	211 (17.5)
	786 (58.9)	717 (59.5)
	298 (22.3)	263 (21.8)
	8 (0.6)	14 (1.2)

actice Changing 2024

Characteristic	Sentinel-Node Biopsy Only (N = 1335)	Completion Axillary-Lymph- Node Dissection (N=1205)
Tumor subtype — no. (%)		
ER-positive, HER2-negative	1166 (87.3)	1034 (85.8)
ER-positive, HER2-positive	84 (6.3)	88 (7.3)
ER-negative, HER2-positive	23 (1.7)	34 (2.8)
ER-negative, HER2-negative	57 (4.3)	46 (3.8)
Missing data	5 (0.4)	3 (0.2)
Ki-67 proliferation index		
Mean — %	24.6=17.2	24.8±17.7
Median (range) — %	20 (1-98)	20 (1-98)
Missing data no. (%)	13 (1.0)	18 (1.5)

De Boniface J et al. NEJM 2024

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

APRIL 4, 2024

VOL. 390 NO. 13

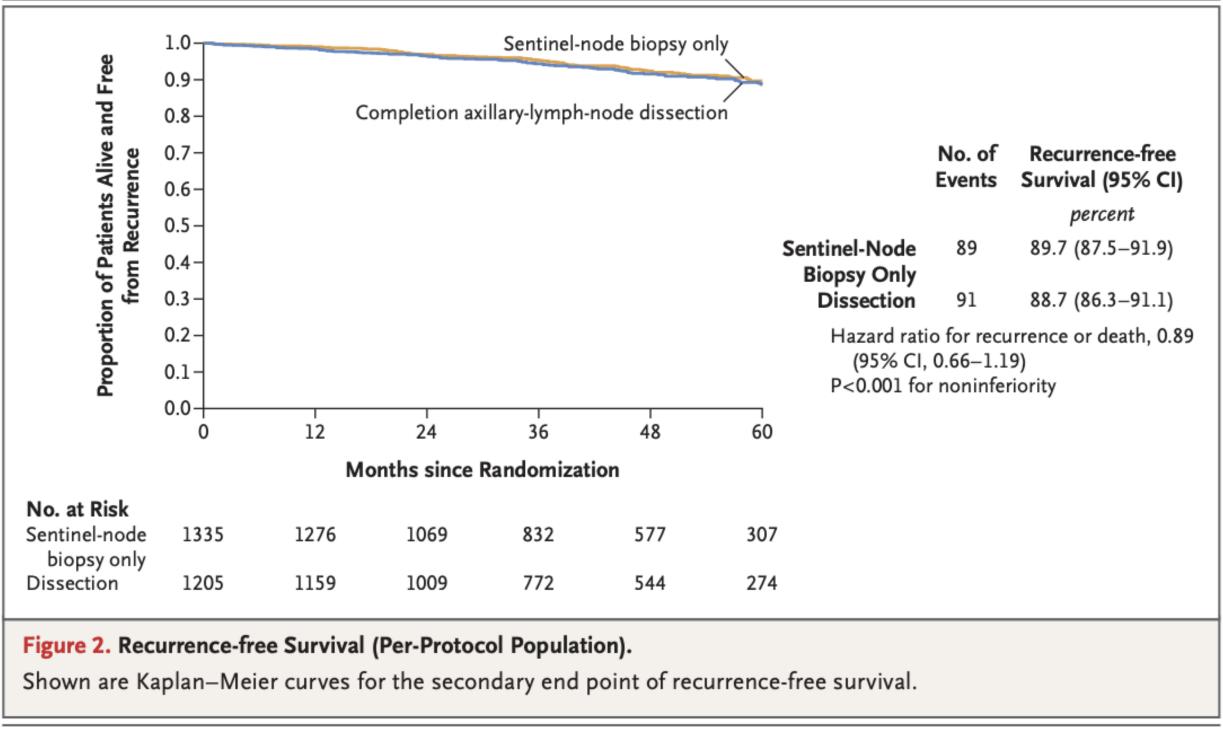
Omitting Axillary Dissection in Breast Cancer with Sentinel-Node Metastases

Findings

Population Analysis:

- SNB-only group: 1,335 patients _
- Dissection group: 1,205 patients

Recurrence-Free Survival (5 years):


- SNB-only group: 89.7% (95% CI: 87.5–91.9) -
- Dissection group: 88.7% (95% CI: 86.3–91.1) -
- Hazard ratio: 0.89 (95% CI: 0.66–1.19), below the _ noninferiority margin (P<0.001)

Radiation Therapy Use:

- SNB-only group: 89.9% received nodal radiation -
- Dissection group: 88.4% received nodal radiation -

ROMA 30-31 GENNAIO 2025

Omitting Axillary Dissection in Breast Cancer – **SENOMAC Trial Results**

De Boniface J et al. NEJM 2024

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

APRIL 4, 2024

VOL. 390 NO. 13

Conclusions

Omitting Axillary Dissection in Breast Cancer with Sentinel-Node Metastases

- Omission of cALND is noninferior to dissection in recurrence-free survival for patients with sentinel-node macrometastases, most of whom received nodal radiation therapy
- Results suggest that SNB alone, combined with appropriate adjuvant therapy, may be a safe standard of care for select patients

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Subgroup	Sentinel-Node Biopsy Only no. of patients w	Completio Axillary-Lym Node Dissec ith event/total	ph- tion Hazard Rat	io for Recurre	nce or Death (95% CI)
Overall, per-protocol population	89/1335	91/1205	-		0.89 (0.66-1.19)
Age					(
<65 yr	36/806	41/709	⊢		0.77 (0.49-1.20)
≥65 yr	53/529	50/496			1.02 (0.69–1.51)
Tumor stage					
T1 or T2	84/1262	81/1131			0.94 (0.69-1.28)
T3	5/73	10/74	—		0.47 (0.16–1.39)
No. of macrometastases	-,				(
1	76/1143	72/1008			0.92 (0.67-1.27)
2	13/192	19/197			0.79 (0.39–1.59)
- Tumor type			-		
Lobular	19/278	17/226	-	1	0.91 (0.47-1.76)
Nonlobular	70/1057	74/979		; 	0.88 (0.64–1.23)
Surgery type	, 0/100/	7 1 5 7 5	•		0.00 (0.01 1.25)
Breast-conserving	48/845	46/775			0.98 (0.65-1.47)
Mastectomy	41/490	45/430		· ·	0.79 (0.52–1.21)
Extracapsular extension	41/490	45/450			0.75 (0.52 1.21)
Yes	34/461	31/409			0.94 (0.58–1.54)
No	55/871	60/791		-	0.86 (0.60–1.25)
Tumor subtype	55/8/1	00/791			0.80 (0.60-1.25)
	72 /11 66	69/1024		_	0.05 (0.69 1.22)
ER-positive, HER2-negative ER-positive, HER2-positive	73/1166	68/1034	· -		0.95 (0.68–1.32)
1 1 1	3/84	10/88		1.	0.26 (0.07–0.96)
ER-negative, HER2-positive	2/23	3/34			▶ 1.04 (0.17-6.35)
ER-negative, HER2-negative	10/57	10/46			▶ 0.95 (0.39-2.30)
Sensitivity analysis	00/3225	01/1005			
Model adjusted for calendar period		91/1205			0.89 (0.66-1.19)
Modified intention-to-treat populati	,	93/1253		1	0.89 (0.67–1.19)
At least 9 lymph nodes removed if patient was randomly assigned	89/1335	83/1036			0.82 (0.61–1.10)
to dissection group			0.5	1.0 1.5	2.0
			Sentinel-Node Biops Only Better	y Completion Lymph- Dissection	Node
Figure 3. Subgroup Analysis of Re Subgroup analyses were conducted that was adjusted for calendar year in the modified intention-to-treat nodes were removed in the disses Arrows indicate that the 95% conf with the width of the diamond in human epidermal growth factor r	ed in the per-part of (as a potentian population, a ction group (w idence interval dicating the 9	rotocol popu al factor that nd with intro ith the overa exceeds the	may predict nonad oduction of the requ Il sentinel-node bio graphed area. Diam	herence to the uirement that psy—only gro onds represe	e assigned treatment), t at least nine lymph oup as the comparator). ent the overall estimate,

Comparison between SENOMAC, Z0011 and AMAROS

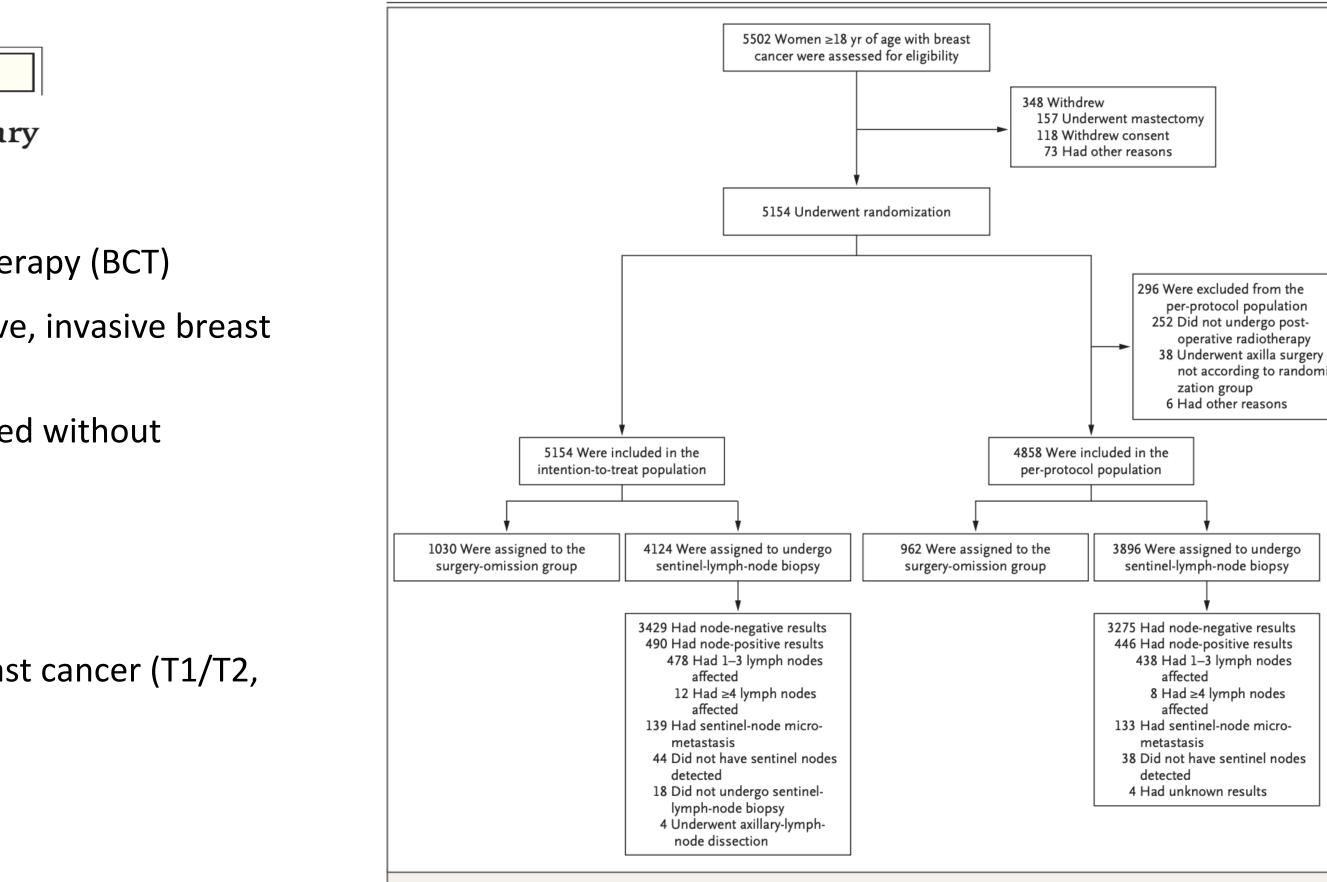
Characteristic	SENOMAC	Z0011	AMAROS
Period	2015-2021	1999-2004	2001-2010
Population	2766 patients	891 patients	1425 patients
Surgery	Conservative and mastectomy	Conservative only	Conservative and mastectomy
N Metastases	Macrometastases (micrometastes allowed)	Micro and macrometastases (40% micro)	Micro and macrometastases
Tumors	T1-T3	T1-T2	T1-T2
Extracapsular extension	Allowed	Excluded	Not reported
Mastectomy	>33% of cases	Not allowed	17.4% of cases
Nodal RT	89% of cases	Not standardized	Study arm

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Axillary Surgery in Breast Cancer — Primary Results of the INSEMA Trial

Background


- Axillary surgery has long been a standard part of breast-conserving therapy (BCT)
- The necessity of axillary staging in patients with clinically node-negative, invasive breast cancer has been debated
- The INSEMA trial investigated whether axillary surgery could be omitted without compromising invasive disease-free survival (iDFS)

Methods

- **Trial Type:** Prospective, randomised, noninferiority study
- **Population:** 5,502 patients with clinically node-negative, invasive breast cancer (T1/T2, tumour size ≤ 5 cm) scheduled for BCT
- **Intervention Groups:**
 - Surgery-omission group: No axillary surgery
 - Surgery group: Sentinel-lymph-node biopsy (SLNB)
- **Primary Endpoint:** iDFS (per-protocol analysis)
- **Noninferiority Criteria:** 5-year iDFS ≥85%, with an upper hazard ratio (HR) limit <1.271
- Median Follow-Up: 73.6 months

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Figure 1. Randomization and Analysis.

Failed sentinel-lymph-node mapping was an indication for axillary-lymph-node dissection according to the trial protocol, based on the guideline released by the American Society of Breast Surgeons in November 2014.

Reimer T, et al. N Engl J Med. 2024

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Axillary Surgery in Breast Cancer — Primary Results of the INSEMA Trial

Findings

Primary Outcome:

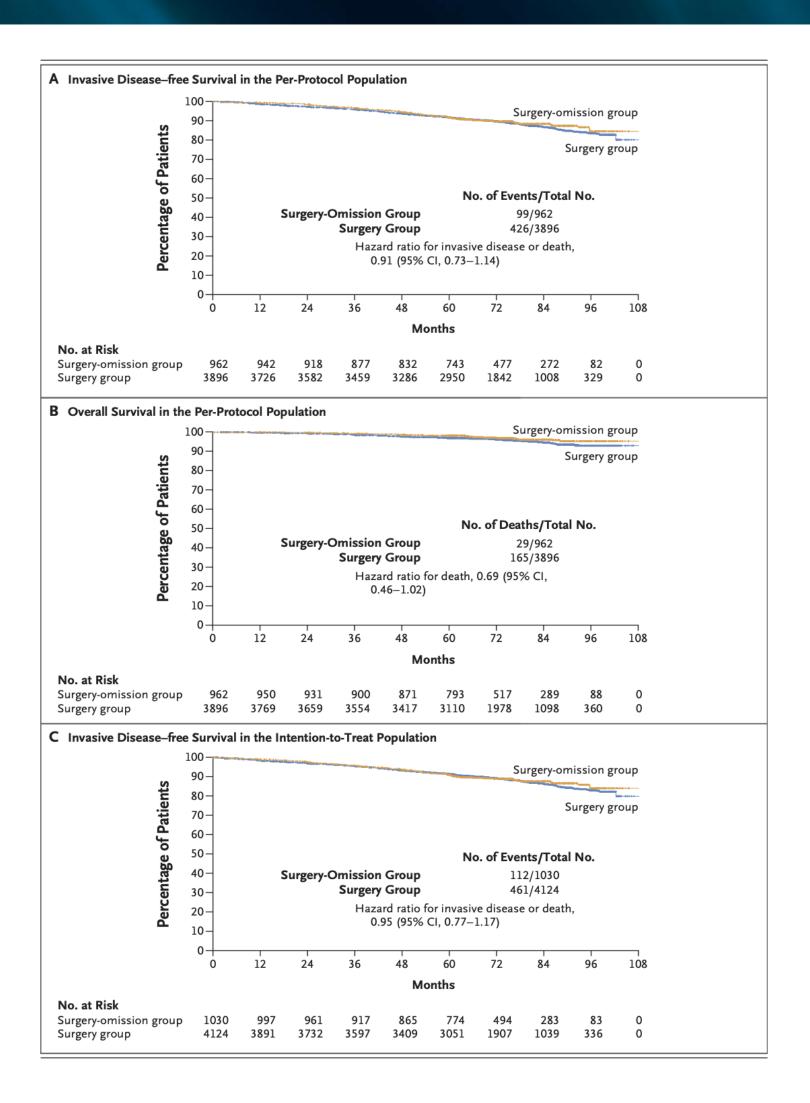
5-year iDFS:

- Surgery-omission group: 91.9% (95% CI: 89.9–93.5)
- Surgery group: 91.7% (95% CI: 90.8–92.6)
- Hazard ratio: 0.91 (95% CI: 0.73–1.14)

Axillary Recurrence:

- Surgery-omission: 1.0%
- Surgery group: 0.3%

Mortality Differences:


- Surgery-omission group: 1.4%
- Surgery group: 2.4%

Safety and QoL Outcomes:

- **Reduced lymphedema**
- Improved arm mobility
- Less pain in arm/shoulder movement _

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Reimer T, et al. N Engl J Med. 2024

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Axillary Surgery in Breast Cancer — Primary Results of the INSEMA Trial

Conclusions

- Omission of surgical axillary staging was noninferior to -SLNB in iDFS after 6 years
- Patients in the surgery-omission group experienced fewer adverse effects and better quality of life
- Findings challenge the necessity of routine axillary staging in selected patients, potentially reshaping standards of care

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Table 2. Summary of Primary-Outcome Events in the Per-Protocol Population.						
Event	No Sentinel-Lymph-Node Biopsy (N = 962)	Sentinel-Lymph-Node Biopsy (N=3896)	All Patients (N=4858)			
Any primary-outcome event — no. (%)						
No	863 (89.7)	3470 (89.1)	4333 (89.2)			
Yes	99 (10.3)	426 (10.9)	525 (10.8)			
First primary-outcome event — no. (%)						
Invasive locoregional relapse	18 (1.9)	54 (1.4)	72 (1.5)			
Invasive contralateral breast cancer	10 (1.0)	25 (0.6)	35 (0.7)			
Distant relapse	26 (2.7)	104 (2.7)	130 (2.7)			
Secondary cancer	32 (3.3)	150 (3.9)	182 (3.7)			
Death	13 (1.4)	93 (2.4)	106 (2.2)			
Locoregional relapse — no. (%)						
Axillary recurrence	10 (1.0)	12 (0.3)	22 (0.5)			
Invasive ipsilateral breast recurrence	8 (0.8)	42 (1.1)	50 (1.0)			
Death from any cause — no./ total no. (%)						
Breast cancer	0	1/93 (1.1)	1/106 (0.9)			
Second, nonbreast cancer	0	3/93 (3.2)	3/106 (2.8)			
Other known cause	7/13 (53.8)	43/93 (46.2)	50/106 (47.2)			
Unknown cause	6/13 (46.2)	46/93 (49.5)	52/106 (49.1)			

Reimer T, et al. N Engl J Med. 2024

Original Reports | Breast Cancer

(用) Check for updates

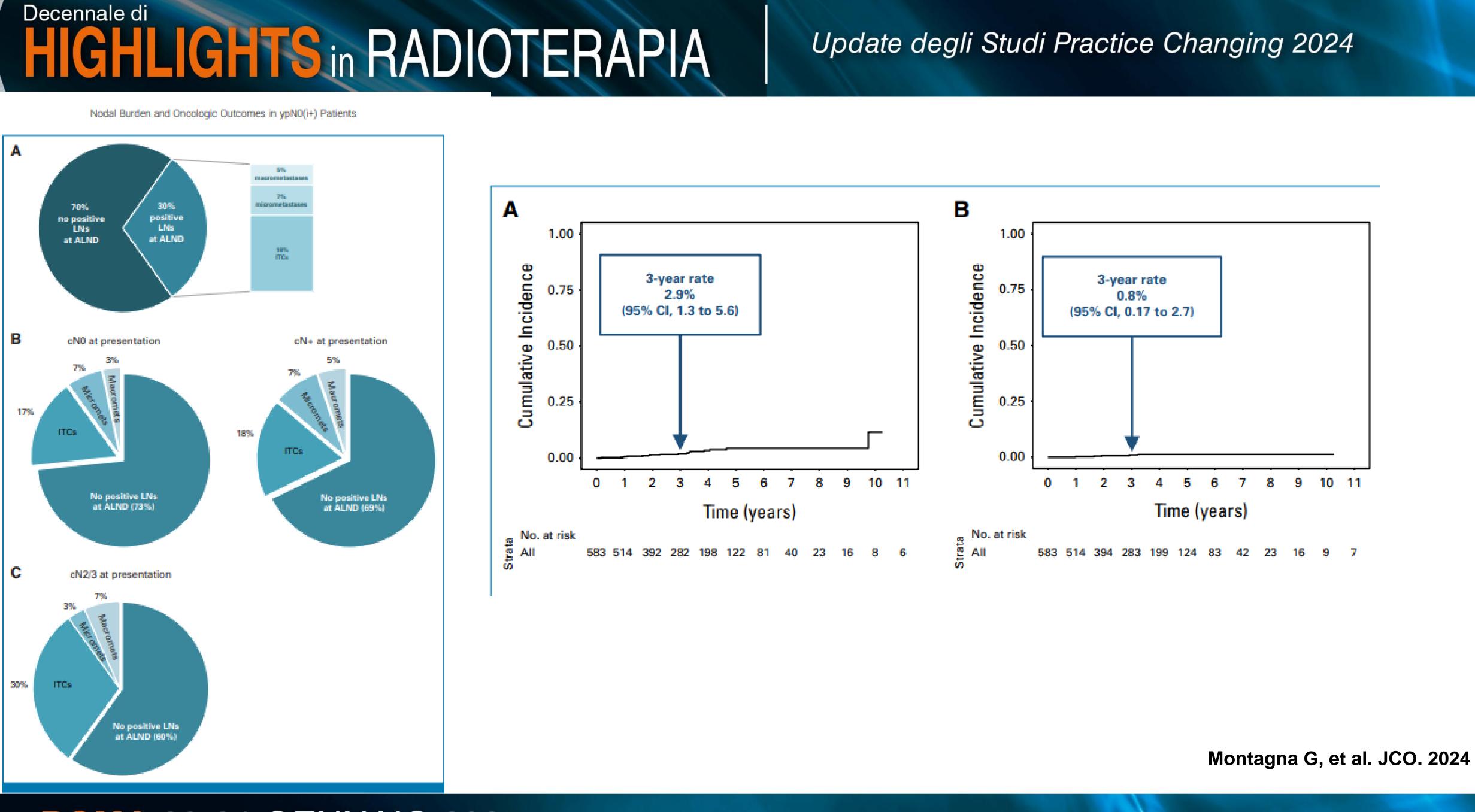
Nodal Burden and Oncologic Outcomes in Patients With Residual Isolated Tumor Cells After Neoadjuvant Chemotherapy (ypN0i+): The OPBC-05/ICARO Study

Giacomo Montagna, MD, MPH¹ 💿 ; Alison Laws, MD, MPH² 💿 ; Massimo Ferrucci, MD, PhD³ 💿 ; Mary M. Mrdutt, MD, MS⁴ ; Susie X. Sun, MD⁵ 😰 Suleyman Bademler, MD⁶ (p); Hakan Balbaloglu, MD⁷; Nora Balint-Lahat, MD^{8,9}; Maggie Banys-Paluchowski, MD, PhD¹⁰; Andrea V. Barrio, MD¹; John Benson, MD¹¹; Nuran Bese, MD¹²; Judy C. Boughey, MD⁴ (2); Marissa K. Boyle, MD¹³ (2); Emilia J. Diego, MD¹⁴; Claire Eden, MD¹⁵; Ruth Eller, MD^{16,17} (b); Maite Goldschmidt, MSC^{16,17}; Callie Hlavin, MD, MPH¹⁴; Martin Heidinger, MD^{16,17} (b); Justyna Jelinska, MD, PhD¹⁸, Güldeniz Karadeniz Cakmak, MD, FEBS⁷ (2); Susan B. Kesmodel, MD¹⁹ (3); Tari A. King, MD² (3); Henry M. Kuerer, MD, PhD⁵; Julie Loesch, MD^{16,17} Francesco Milardi, MD³ (D); Dawid Murawa, MD, PhD¹⁸ (D); Tracy-Ann Moo, MD¹; Tehillah S. Menes, MD, MSc^{8,9} (D); Daniele Passeri, MD³ (D); Jessica M. Pastoriza, MD²⁰ (1); Andraz Perhavec, MD, PhD²¹ (10); Nina Pislar, MD²¹; Natália Polidorio, MD, PhD¹ (10); Avina Rami, BA² (10); Jai Min Ryu, MD, PhD²²; Alexandra Schulz, MSc^{16,23}; Varadan Sevilimedu, MBBS, DrPH²⁴; M. Umit Ugurlu, MD²⁵ (10); Cihan Uras, MD¹²; Annemiek van Hemert, MSc²⁶ (16); Stephanie M. Wong, MD, MPH²⁷; Tae-Kyung Robyn Yoo, MD²⁸ (15); Jennifer Q. Zhang, MD²⁹ (16); Hasan Karanlik, MD⁶; Neslihan Cabioğlu, MD³⁰; Marie-Jeanne Vrancken Peeters, MD, PhD³¹ (b); Monica Morrow, MD¹ (b); and Walter P. Weber, MD^{16,17} (); on behalf of the ICARO Study Group

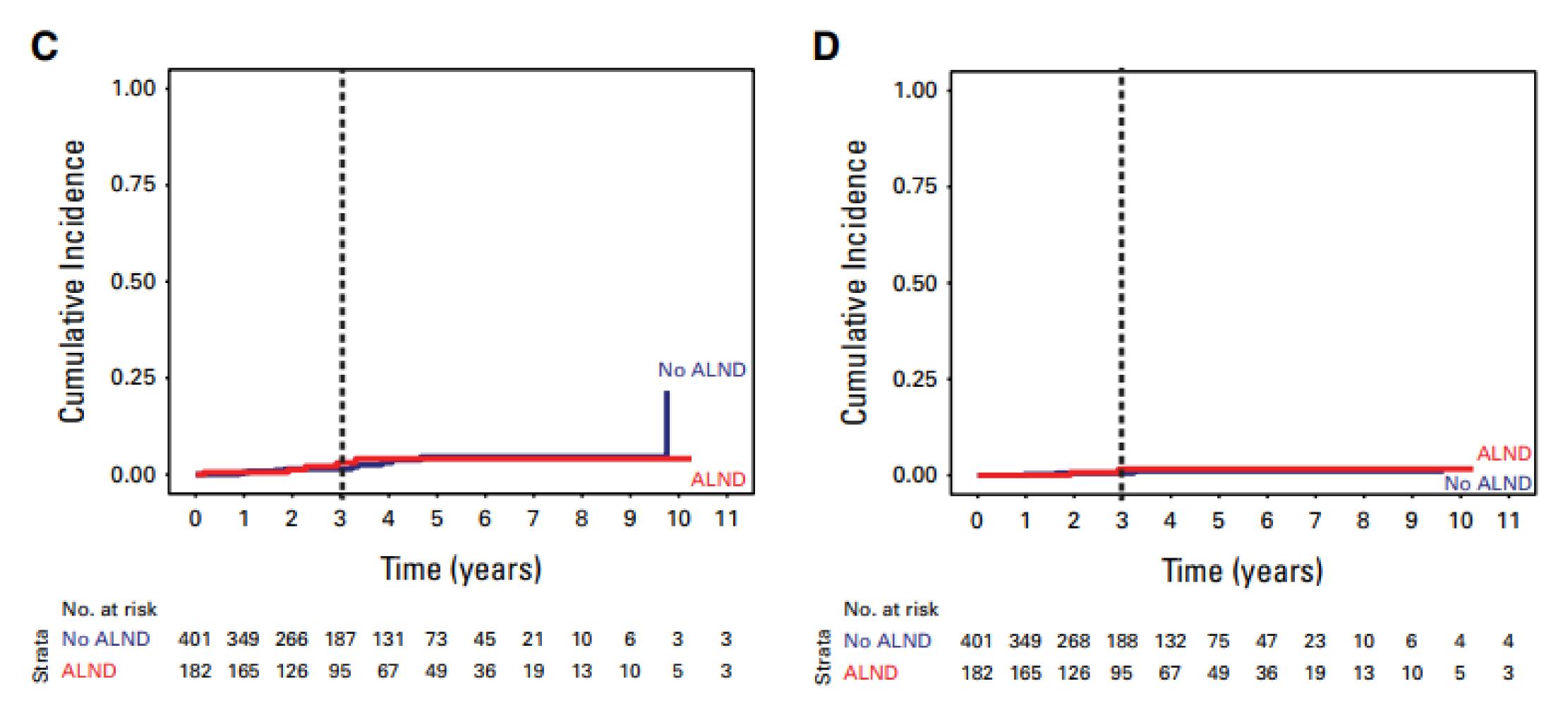
DOI https://doi.org/10.1200/JC0.24.01052

Background

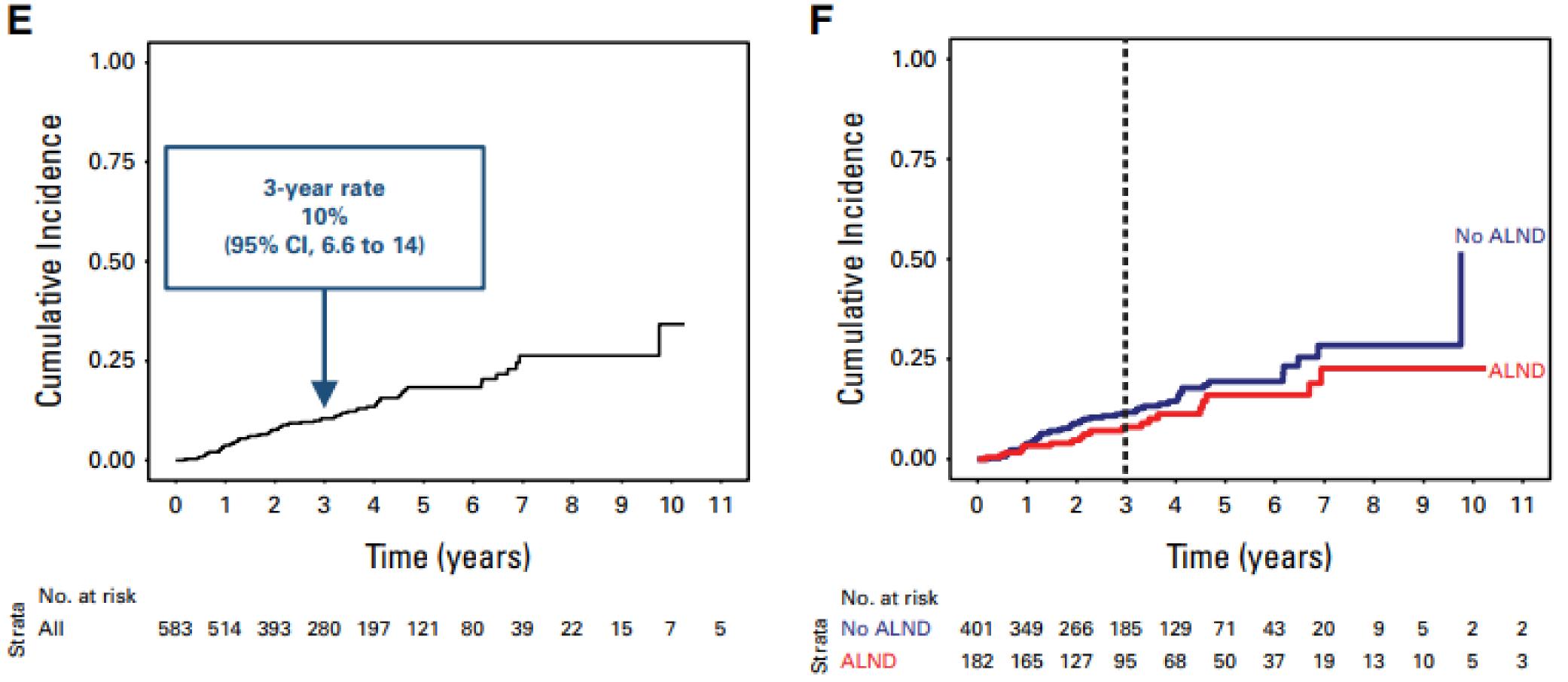
- To investigate the role of axillary lymph node dissection (ALND) in patients with residual isolated tumor cells (ITCs) in the sentinel lymph nodes (SLNs) after neoadjuvant chemotherapy.
- Methods
- **Trial Type:** Retrospective. Patients with stage I to III breast cancer with ITCs in SLNs after NAC from 62 centers in 18 countries.
- **Population:** 583 patients were included, of whom 182 (31%) had completion ALND _____


and 401 (69%) did not.

- **Primary Endpoint:** The primary end point was the 3-year rate of any axillary recurrence.
- Median Follow-Up: 38 months


ROMA 30-31 GENNAIO 2025

Montagna G, et al. JCO. 2024


Decennale di HIGHLIGHTS in RADIOTERAPIA Update degli Studi Practice Changing 2024

ROMA 30-31 GENNAIO 2025

Montagna G, et al. JCO. 2024

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Montagna G, et al. JCO. 2024

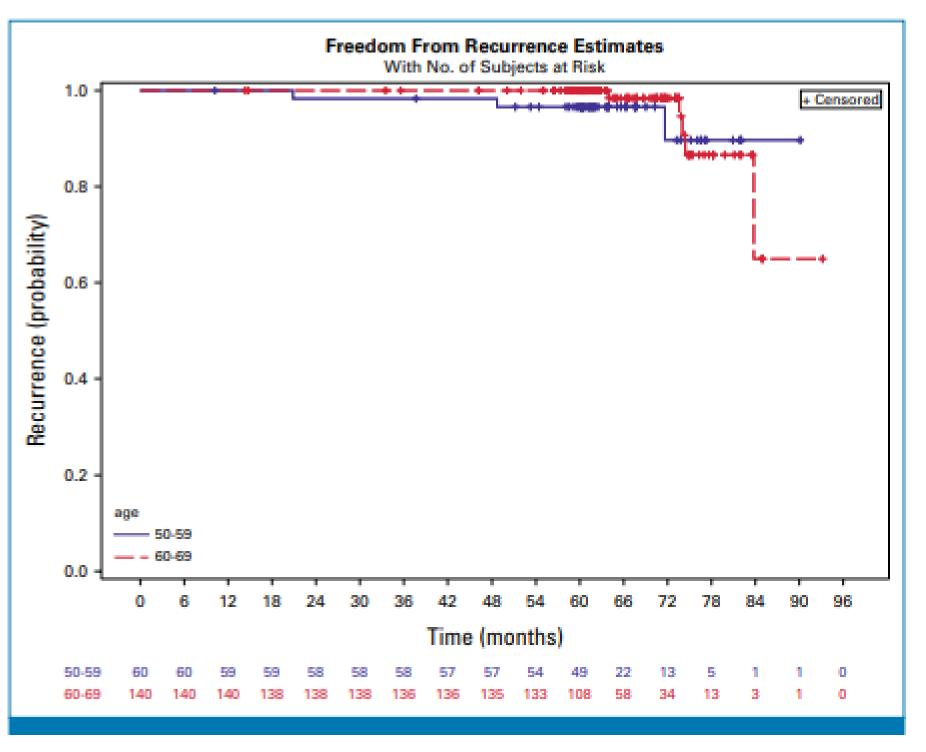
Decennale di HGHLGHTS in RADIOTE PADIA TABLE 1. Characteristics of Patie

Original Reports | Breast Cancer

Check for updates

Omission of Radiotherapy After Breast-Conserving Surgery for Women With Breast Cancer With Low Clinical and Genomic Risk: 5-Year Outcomes of IDEA

Reshma Jagsi, MD, DPhil 1.2 🔞 ; Kent A. Griffith, MS2 🐚 ; Eleanor E. Harris, MD3 🔞 ; Jean L. Wright, MD4 🔞 ; Abram Recht, MD5 🔞 ; Alphonse G. Taghian, MD, PhD⁶ (2); Lucille Lee, MD⁷; Meena S. Moran, MD⁸ (2); William Small Jr, MD⁹ (2); Candice Johnstone, MD¹⁰; Asal Rahimi, MD11; Gary Freedman, MD12; Mahvish Muzaffar, MD13 🕞 ; Bruce Haffty, MD14 🕞 ; Kathleen Horst, MD15; Simon N. Powell, MD, PhD16 🕞 Jody Sharp, BS²; Michael Sabel, MD²; Anne Schott, MD² (); and Mahmoud El-Tamer, MD¹⁶ ()


DOI https://doi.org/10.1200/JC0.23.02270

- Postmenopausal patients age 50-69 years with pT1N0 unifocal invasive breast cancer with margins ≥ 2 mm after BCS Luminal A with Oncotype DX 21-gene recurrence score ≤18 were prospectively enrolled in a single-arm trial of radiotherapy omission if they consented to take at least 5 years of ET.
- The primary end point was the rate of locoregional recurrence 5 years after BCS.
- Between June 2015 and October 2018, 200 eligible patients were enrolled.
- The 5-year freedom from any recurrence was 99%.
- Median follow-up time was 5.21 years.

ROMA 30-31 GENNAIO 2025

Characteristic	Statistics
Year enrolled, No. (%)	
2015	10 (5)
2016	58 (29)
2017	103 (51.5
2018	29 (14.5
Age, years	
Mean (SD)	62 (4.9)
Median (IQR)	63 (58-66
Age group, No. (%)	
50-59	60 (30)
60-69	140 (70)
Zubrod performance status, No. (%)	
0, asymptomatic	175 (87.5
1, symptomatic, fully ambulatory	25 (12.5
MRI at the time of diagnosis, No. (%)	1
No	134 (67)
Yes	66 (33)
Imaging evidence beyond primary site of turnor, No. (%)	
No	188 (94)
Yes, biopsy-proven nonmalignant	12 (6)
Nodal evaluation procedure, No. (%)	
SLNB only	190 (95)
SLNB, ALND	7 (3.5)
ALND only	3 (1.5)
Histology, No. (%)	
Ductal	169 (84.5
Lobular	20 (10)
Ductal and lobular	4 (2)
Mucinous	3 (1.5)
Tubular	4 (2)
Oncotype DX 21-gene assay recurrence score	
Mean (SD)	11.2 (4.8)
Median (IQR)	12 (8-15
Tumor grade, No. (%)	
Well differentiated	85 (42.5
Moderately differentiated	109 (54.5
Poorly differentiated	6 (3)
Tumor size, mm	
Mean (SD)	10 (4.6)
Median (IQR)	9 (7-13
Nodal status, No. (%)	п
Node-negative without ITCs	199 (99.5
ITCs, no cluster >0.2 mm	1 (0.5)
Lymphovascular invasion, No. (%)	
Absent	171 (85.5
Present	16 (8)
Not reported/unknown	13 (6.5)
Extensive intraductal component, No. (%)	
Absent	90 (45)

Update degli Studi Practice Changing 2024

FIG 1. Freedom from recurrence in relation to age coh	iort.
---	-------

Jagsi R et al. JCO 2024

To report 5-year results of IRMA trial

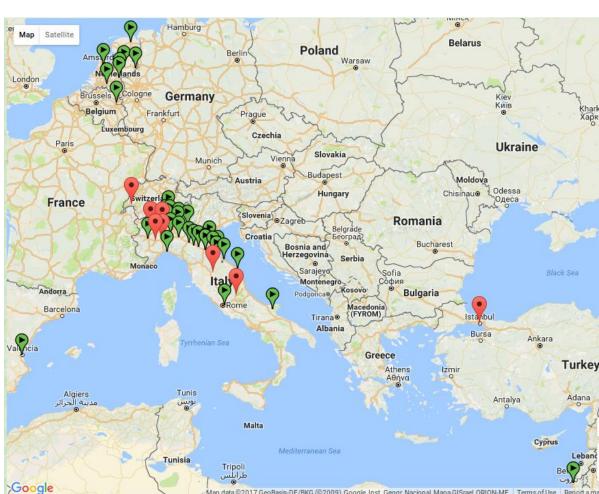
IRMA trial (NCT 01803958)

Multicentric randomized trial (Italy, Netherlands, Spain, Switzerland, Israel) Non inferiority study (APBI vs WBI)

Primary Objective : Local control

(incidence of ipsilateral breast tumour recurrences)

Secondary Objectives: OS, Cosmesis, Toxicity


https://clinicaltrials.gov/ct2/show/NCT01803958 - www.irmatrial.it

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

EST<u>R0</u>2024

Treatment

APBI: 38.5 Gy in 10 fractions b.i.d

WBI: conventional or hypo-fractionated

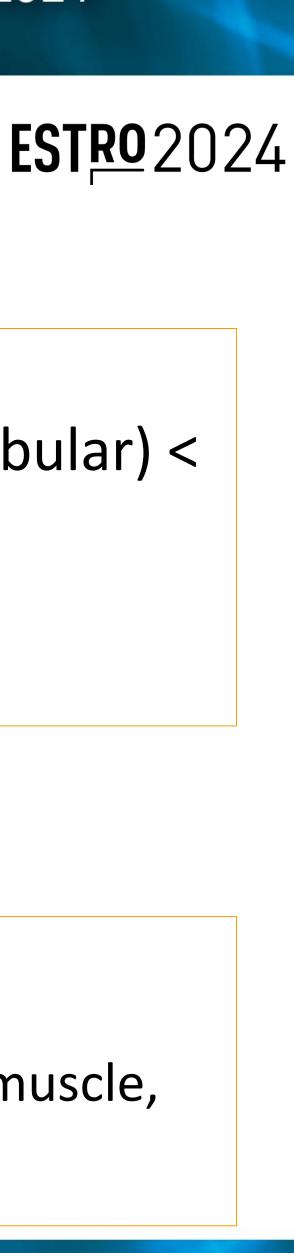
Adjuvant systemic therapy according to

institutional guidelines

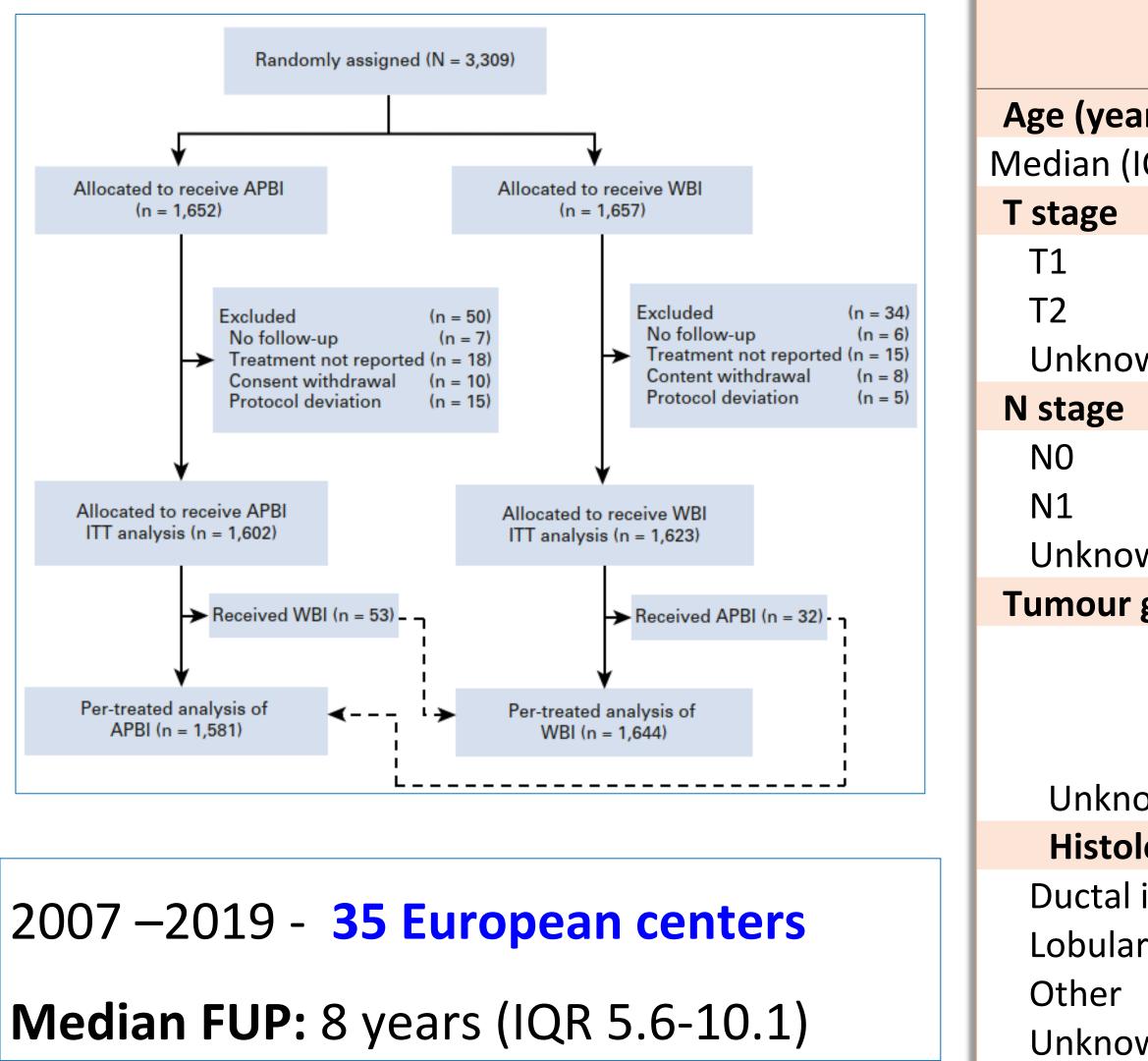
APBI volume and techniques

Technique: 4-5 non-coplanar conformal fields or with intensity modulated RT

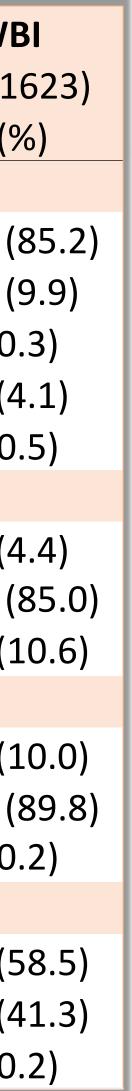
<u>CTV</u>: tumour bed [surgical clips (and seroma, if present)] + 1,5 cm, excluding pectoralis major muscle,

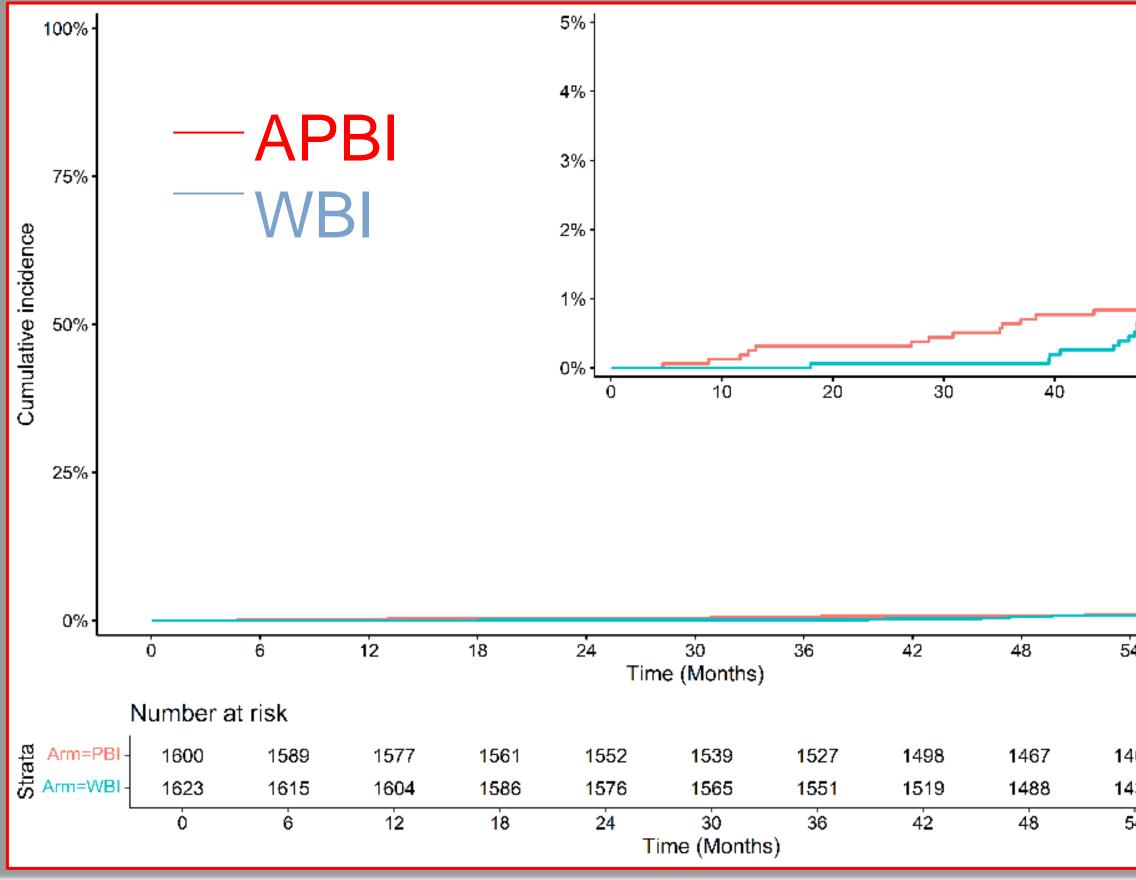

chest wall, and tissue within 5 mm of the skin --- **PTV**: CTV plus a 1 cm margin

ROMA 30-31 GENNAIO 2025



Update degli Studi Practice Changing 2024


 \circ Age \geq 49 years Olnvasive breast cancer (including lobular) <</p> 3 cm, pN0-1, treated with BCS OUnifocal disease • Negative resection margins (≥2 mm)


ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

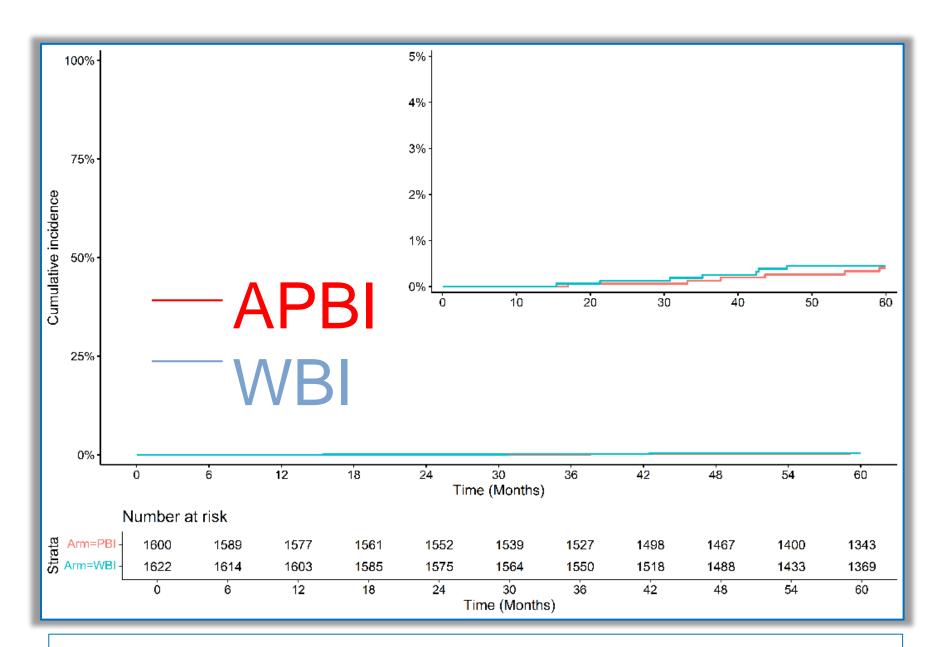
	APBI (N = 1602)	WBI (N = 1623)		APBI	WB
	n (%)	n (%)		(N = 1602) n (%)	(N = 16 n (%
ars)			Hormone Re	、 2	
IQR)	65 (58 – 70)	65 (58 – 71)	ER+/PR+	1366 (85.3)	1383 (8
	1479 (92.3)	1484 (91.4)	ER+/PR-	166 (10.3)	161 (9
wn	123 (7.7) 0	138 (8.5) 1 (0.1)	ER-/PR+ ER-/PR-	1 (0.1) 53 (3.3)	5 (0. 66 (4
/ / / / /	U	1 (0.1)	Unknown	16 (1.0)	8 (0.
	1481 (92.5) 121 (7.5)	1503 (92.6) 119 (7.3)	HER2-neu Positive Negative	71 (4.4) 1344 (83.9)	72 (4 1379 (8
wn	0	1 (0.1)	Unknown	187 (11.7)	172 (1
grad	e 453 (28.3)	450 (27.7)	Adjuvant Che		
י 	433 (28.3) 896 (55.9) 224 (14.0)	908 (56.0) 231 (14.2)	Yes No	170 (10.6) 1432 (89.4)	163 (1 1457 (8
own	29 (1.8)	34 (2.1)	Unknown	0	3 (0.
logy			Hormone The	erapy	
inv	1341 (83.7)	1371 (84.5)	Yes	951 (59.4)	949 (5
ar inv	131 (8.2)	114 (7.0)	No	651 (40.6)	671 (4
	123 (7.7)	133 (8.2)	Unknown	0	3 (0.
wn	7 (0.4)	5 (0.3)			

Decennale di HGHLGHTS in RADIOTERAPIA Update degli Studi Practice Changing 2024 Ipsilateral breast tumour recurrence EST<u>R0</u>2024

ROMA 30-31 GENNAIO 2025

5-year cumulative rate of Ipsilateral breast tumour

recurrence


APBI: 1% (95% CI 0.6% - 1.6%) **WBI**: 0.8% (95% CI 0.5% - 1.4%)

HR: 1.18 (90% CI 0.63% - 2.2%)

50		60	
4	60		
100	1343		
133	1369		
4	60		

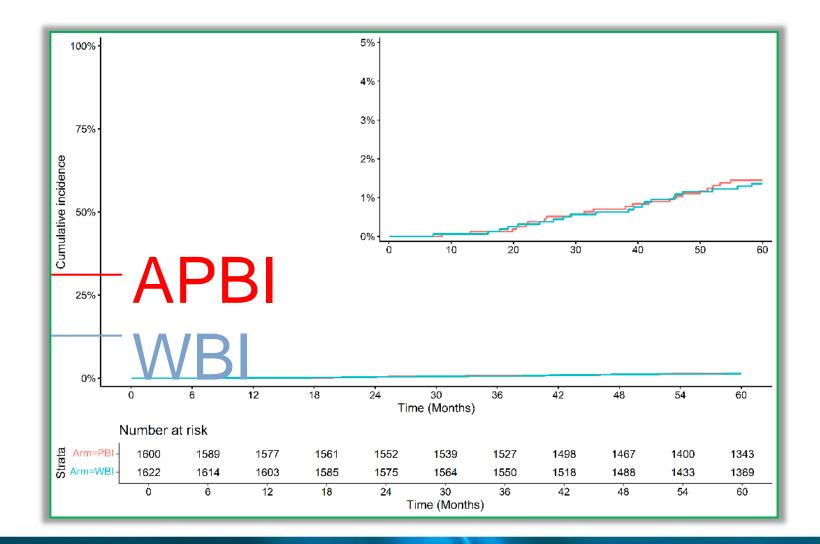
5-year cumulative rate of Regional relapses

APBI: 0.4% (95% CI 0.2% - 0.8%)

WBI: 0.4% (95% CI 0.2% - 0.9%)

HR: 0.87 (95% CI 0.56% - 2.48%)

ROMA 30-31 GENNAIO 2025

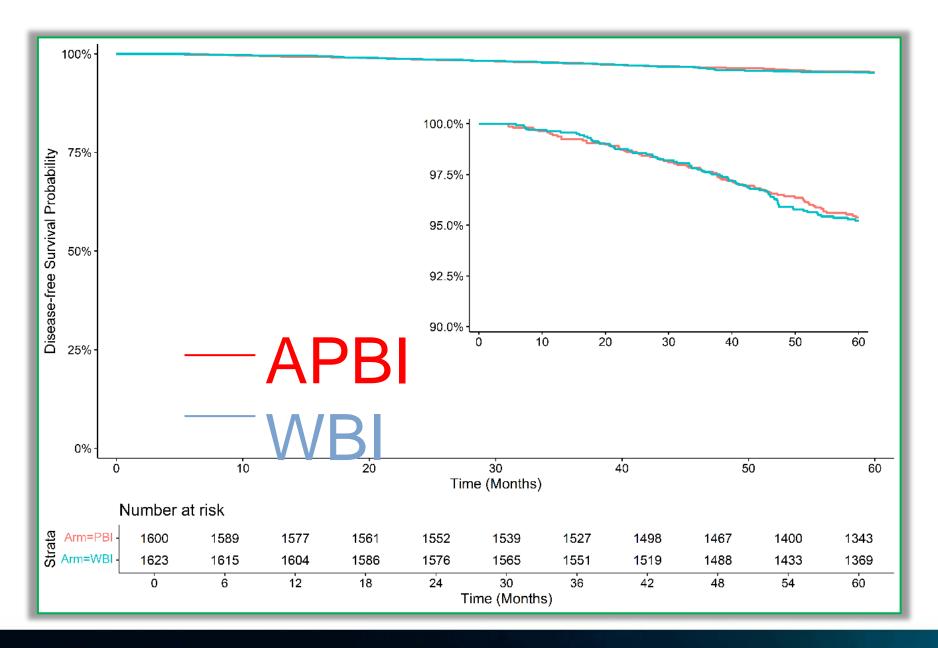

Update degli Studi Practice Changing 2024

5-year cumulative rate of Distant relapses

APBI: 1.4% (95% CI 0.9% - 2.1%)

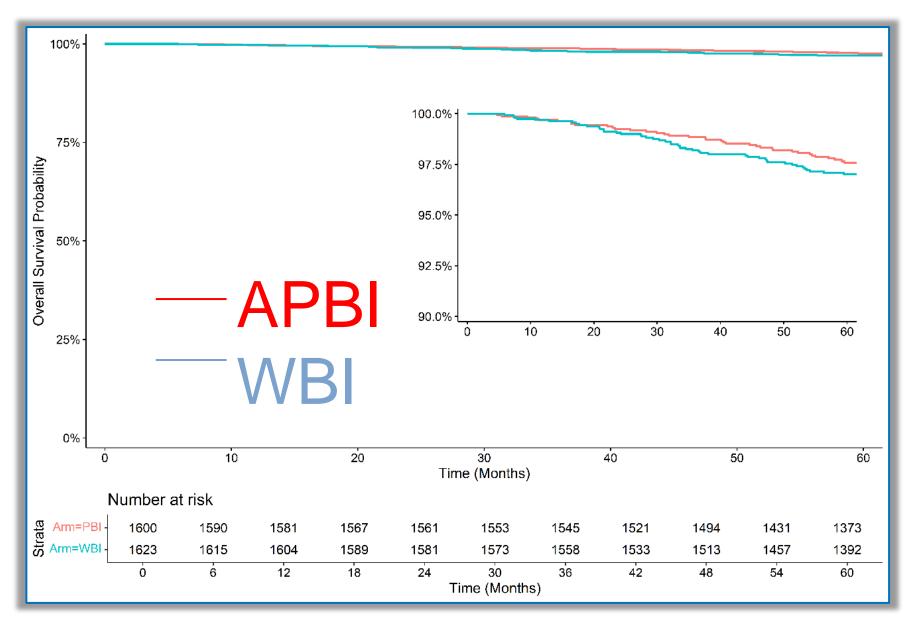
WBI: 1.3% (95% CI 0.2% - 2%)

HR: 1.07 (95% CI 0.59% - 1.94%)



5-year Disease free survival

<u>APBI</u>: 95.4% (95% CI 94.3% - 96.4%)


<u>WBI</u>: 95.2% (95% CI 94.1% - 96.2%)

HR: 0.97 (95% CI 0.69% - 1.33)

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

5-year Overall survival

<u>APBI</u>: 97.6% (95% CI 96.7% - 98.3%)

WBI: 97% (95% CI 96.1% - 97.8%)

HR: 0.8 (95% CI 0.52% - 1.23%)

ROMA 30-31 GENNAIO 2025

External beam APBI with twice-daily schedule was non-inferior to whole breast irradiation in preventing IBTR at 5 years

These data significantly strengthen the evidence in favor of external-beam APBI in low risk invasive BC

GS2-05. Primary Outcomes following Active Monitoring or Surgery (+/- Radiation) for Low-risk DCIS: the COMET Study (AFT-25)

E. Shelley Hwang, Terry Hyslop, Thomas Lynch, Marc D Ryser, Anna Weiss, Anna Wolf, Kelsey Norris, Meredith Witten, Lars Grimm, Stuart Schnitt, Sunil Badve, Rachel Factor, Elizabeth Frank, Deborah Collyar, Desiree Basila, Donna Pinto, Mark A Watson, Robert West, Louise Davies, Jenny Donovan, Ayako Shimada, Yutong Li, Yan Li, Antonia V Bennett, Shoshana Rosenberg, Jeff Marks, Eric Winer, Marc Boisvert, Armando Giuliano, Kelsey Larson, Kathleen Yost, Priscilla McAuliffe, Lisa Carey, Alastair Thompson,* Ann H Partridge. *Co-Senior Authors

ROMA 30-31 GENNAIO 2025

DECEMBER 10-13, 2024

HENRY B. GONZALEZ CONVENTION CENTER • SAN ANTONIO, TX



24010150

Background

- Ductal carcinoma in situ, precancer, preinvasive cancer
- Estimated incidence of DCIS: over 50,000 new cases annually
- Treatment: surgical excision +/- radiotherapy to prevent progression
- DCIS MAY, but DOES NOT ALWAYS progress to invasive cancer; opportunity for active monitoring?

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Ryser M, JNCI 2019 Poelhekken K, Breast 2023 Worni M, JNCI 2015

San Antonio Breast Cancer Symposium® December 10-13, 2024

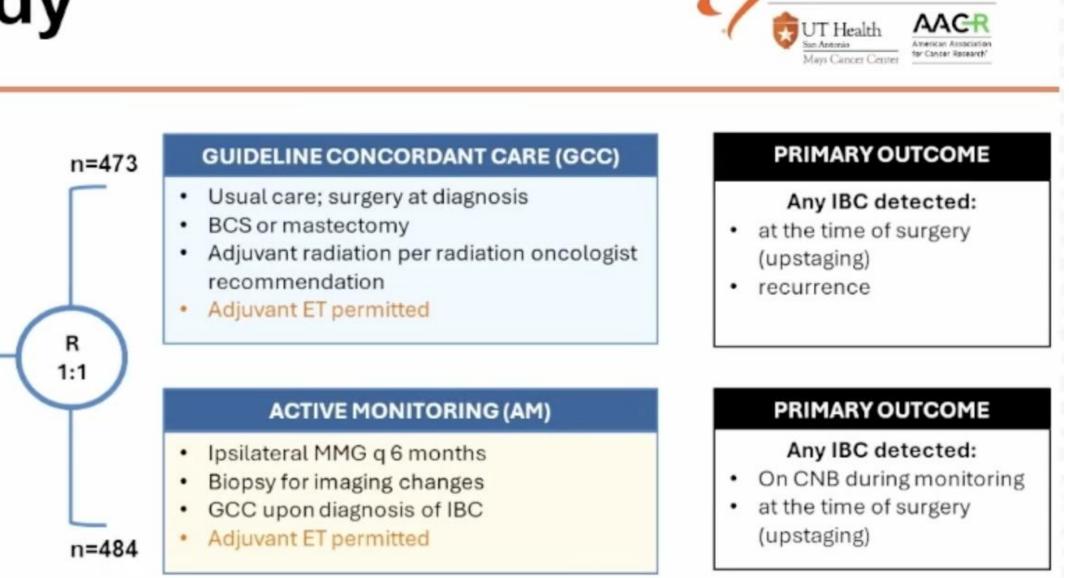
GS2-05: The COMET Study

Randomized, pragmatic noninferiority trial from 2017 - 2022

PARTICIPANTS

Low Risk DCIS (n=957)

- Female, age >=40
- new diagnosis of DCIS without invasive cancer
- grade 1 or 2, HR+
- biopsy x 2 if extent of disease >4cm
- Primary objective: 2-year ipsilateral invasive cancer rate
 - Estimated 10% rate in GCC arm
 - <5% non-inferiority margin

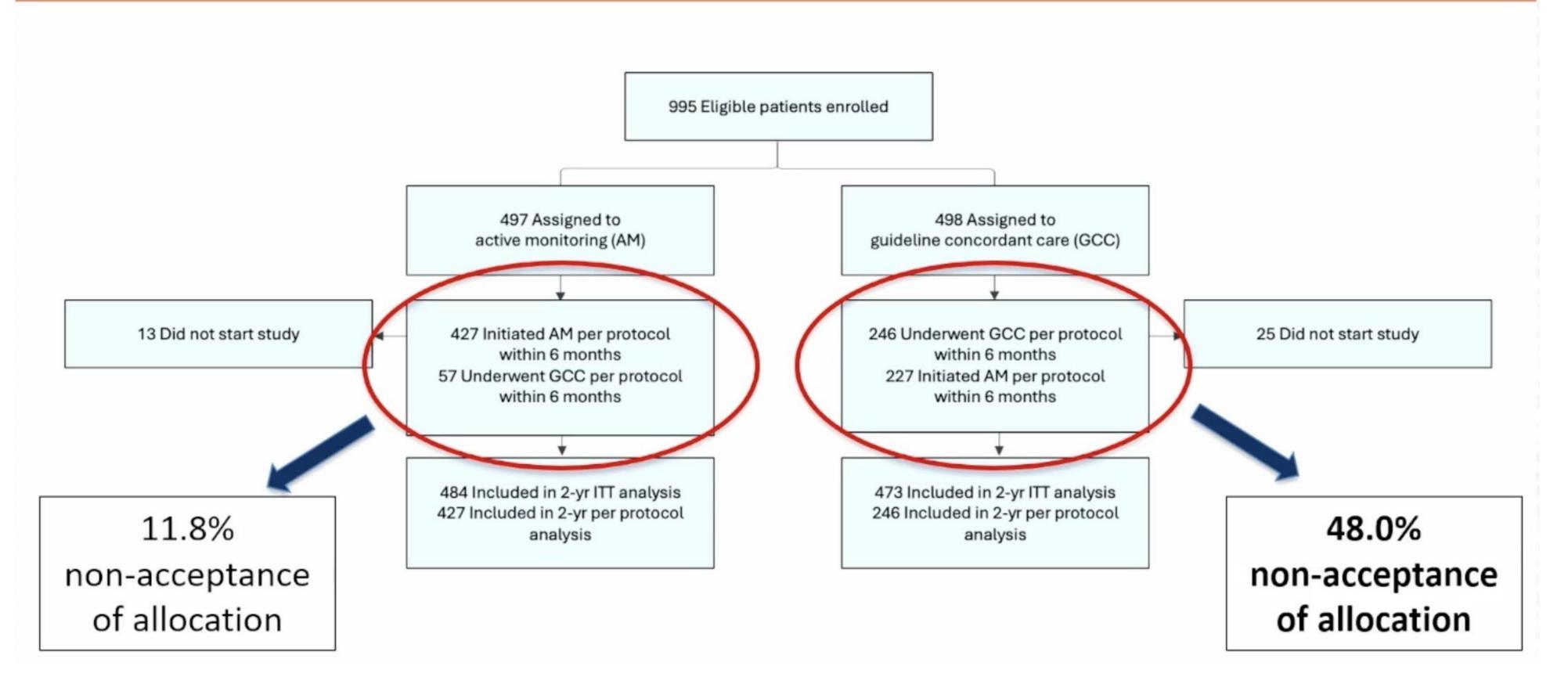

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

SAN ANTONIO

SYMPOSIUM

BREAST CANCER



Hwang et al, Abs # GS2-05

San Antonio Breast Cancer Symposium® December 10-13, 2024

GS2-05: The COMET Study

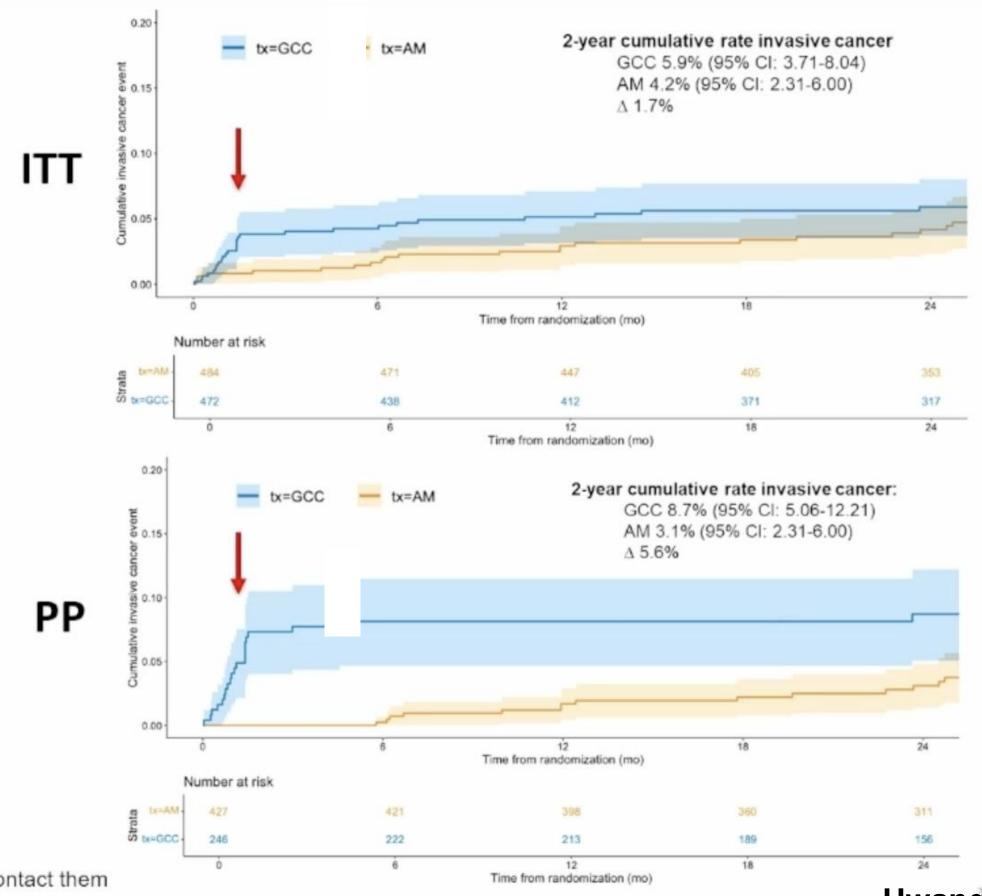
ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Hwang et al, Abs # GS2-05

San Antonio Breast Cancer Symposium® December 10-13, 2024

GS2-05: The COMET Study


- Non-inferiority of AM compared to GCC in both analyses
 - Majority of invasive cancers in . GCC arm were due to upstage
- 26.6% GCC vs 7.4% AM received RT
- 65.5% GCC vs 71.3% AM received any ET in 2 years
- Majority of invasive cancers small (mean 0.45cm, 0.23-1.1)

This presentation is the intellectual property of the author/presenter. Contact them

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Hwang et al, Abs # GS2-05

San Antonio Breast Cancer Symposium® December 10-13, 2024

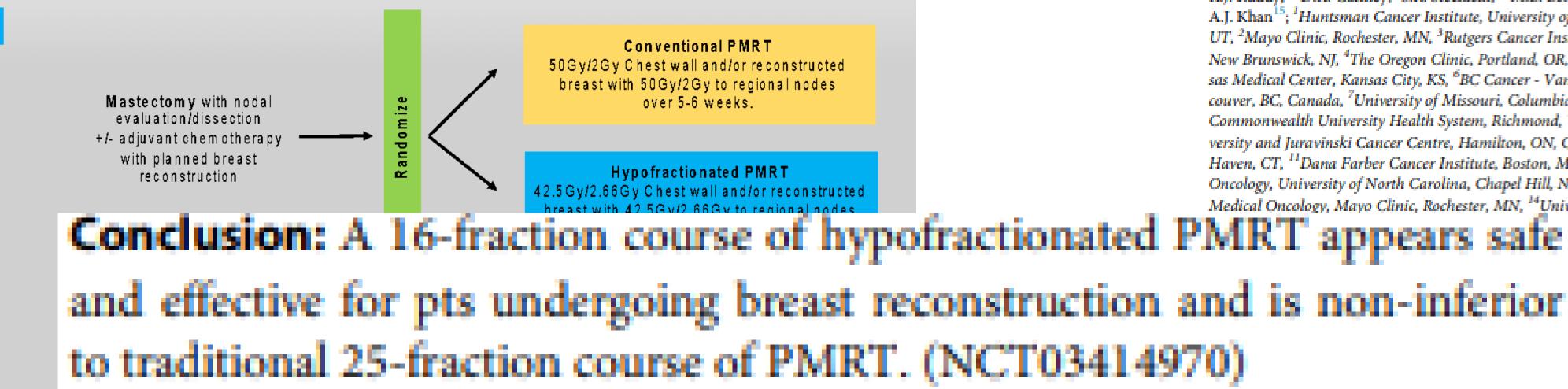
Additional considerations for active surveillance of DCIS

- 48% of patients on GCC did not receive per protocol treatment
 - Indication of significant patient interest in active surveillance of ٠ DCIS
- Role of endocrine therapy in AM
- Frequency of additional imaging and biopsies with AM and associated healthcare costs

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Longer follow up needed – pre-specified analyses at 5 and 7 years


RT-CHARM

Alliance A221505: RT CHARM: Phase III Randomized Trial of Hypofractionated Post Mastectomy Radiation with Breast Reconstruction

Matthew M. Poppe, MD

Huntsman Cancer Hospital, University of Utah

Study Schema

Primary endpoint: Non-inferior reconstruction complication rate at 24 months post radiation with hypofractionation

ROMA 30-31 GENNAIO 2025

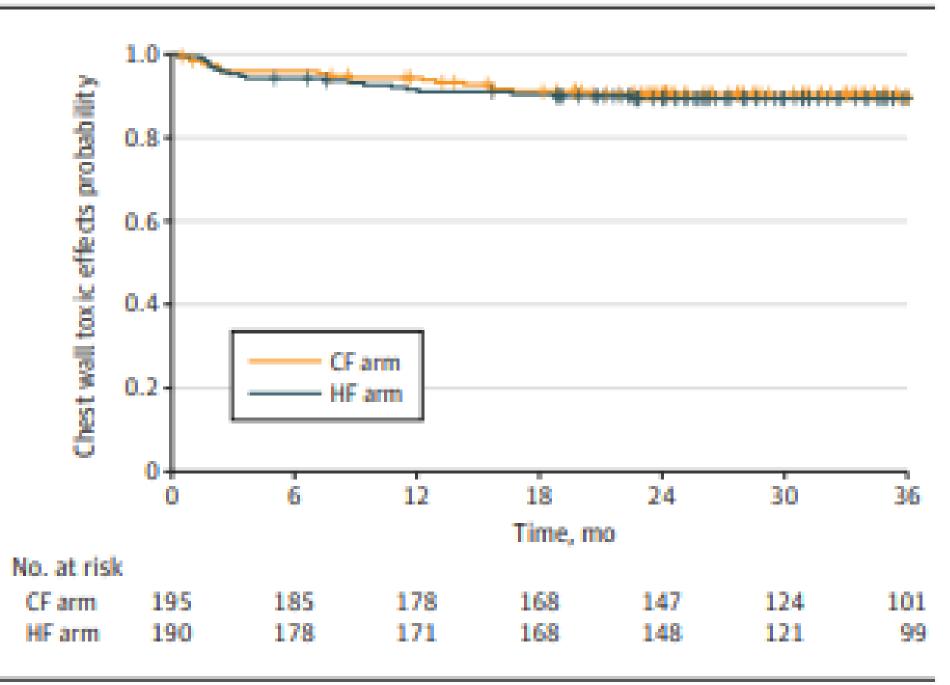
Oral Scientific Sessions

A Randomized Trial of Hypofractionated Post-Mastectomy Radiation Therapy (PMRT) in Women with Breast Reconstruction (RT CHARM, Alliance A221505)

M.M. Poppe,1 J. Le-Rademacher,2 B.G. Haffty, Jr3 E.K. Hansen,4 J. Agarwal,¹ J. Wagner,⁵ I. Kong,⁶ J. Armer,⁷ D.W. Arthur,⁸ T.J. Whelan,⁹ M.K. Lee,² O. Kour,² M. Lustberg,¹⁰ A. Partridge,¹¹ L.A. Carey,¹² K.J. Ruddy,13 D.K. Gaffney,1 S.R. Stecklein,14 M.B. Bernstein,15 and A.J. Khan¹⁵; ¹Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 2Mayo Clinic, Rochester, MN, 3Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, ⁴The Oregon Clinic, Portland, OR, ⁵University of Kansas Medical Center, Kansas City, KS, 6BC Cancer - Vancouver Centre, Vancouver, BC, Canada, ⁷University of Missouri, Columbia, MO, ⁸Virginia Commonwealth University Health System, Richmond, VA, 9McMaster University and Juravinski Cancer Centre, Hamilton, ON, Canada, 10 Yale, New Haven, CT, 11Dana Farber Cancer Institute, Boston, MA, 12Division of Oncology, University of North Carolina, Chapel Hill, NC, 13Department of Medical Oncology, Mayo Clinic, Rochester, MN, 14 University of Kansas,

morial Sloan Ket-

Research


JAMA Oncology | Original Investigation

Hypofractionated vs Conventionally Fractionated Postmastectomy Radiation After Implant-Based Reconstruction A Randomized Clinical Trial

Julia S. Wong, MD; Hajime Uno, PhD; Angela C. Tramontano, MPH; Lauren Fisher, MPH; Catherine V. Pellegrini, BS; Gregory A. Abel, MD, MPH; Harold J. Burstein, MD, PhD; Yoon S. Chun, MD; Tari A. King, MD; Deborah Schrag, MD, MPH; Eric Winer, MD; Jennifer R. Bellon, MD; Matthew D. Cheney, MD, PhD; Patricia Hardenbergh, MD; Alice Ho, MD, MBA; Kathleen C. Horst, MD; Janice N. Kim, MD; Kara-Lynne Leonard, MD, MS; Meena S. Moran, MD; Catherine C. Park, MD; Abram Recht, MD; Daniel E. Soto, MD, MS; Ron Y. Shiloh, MD; Susan F. Stinson, MD; Kurt M. Snyder, MD; Alphonse G. Taghian, MD, PhD; Laura E. Warren, MD; Jean L. Wright, MD; Rinaa S. Punglia, MD, MPH

ROMA 30-31 GENNAIO 2025

Figure 2. Kaplan-Meier Plot for Freedom From Chest Wall Toxic Effects by Treatment Arm

CF indicates conventionally fractionated; HF, hypofractionated.

Wong JS, et al. JCO. 2024

Randomised controlled trials on radiation dose fractionation in breast cancer: systematic review and meta-analysis with emphasis on side effects and cosmesis

Shing Fung Lee,^{1,2} Samantha K F Kennedy,³ Saverio Caini,⁴ Henry C Y Wong,⁵ Pui Lam Yip,^{1,2,6} Philip M Poortmans,^{7,8} Icro Meattini,^{9,10} Orit Kaidar-Person,^{11,12,13} Abram Recht,¹⁴ Tarek Hijal,¹⁵ Mylin A Torres,¹⁶ Jeffrey Q Cao,¹⁷ Kimberly S Corbin,¹⁸ J Isabelle Choi,¹⁹ Wee Yao Koh,^{1,2} Jennifer Y Y Kwan,^{20,21} Irene Karam,^{21,22} Adrian W Chan,^{21,22} Edward Chow,^{21,22} Gustavo N Marta^{23,24,25}

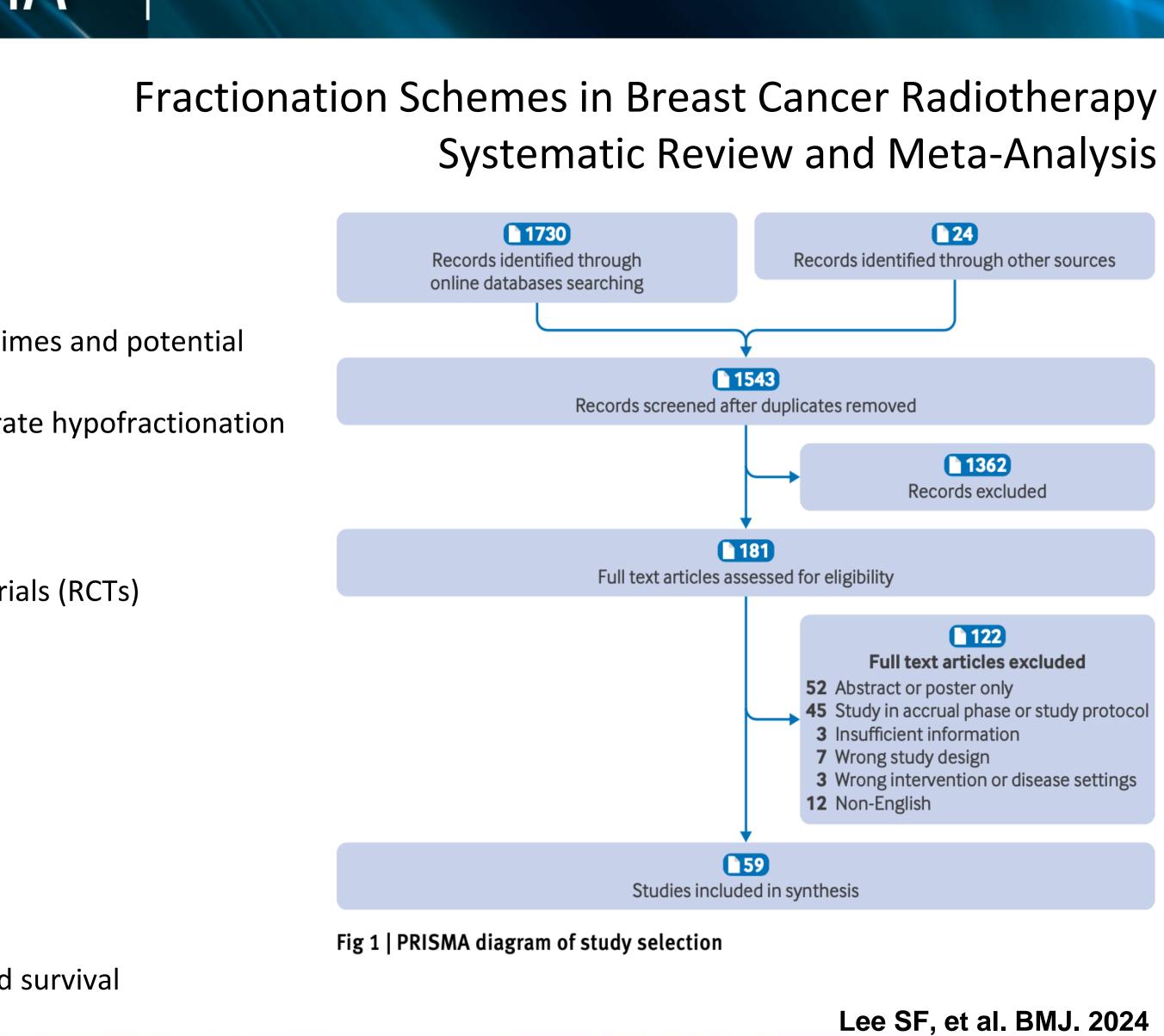
Background

Hypofractionation regimens have gained popularity due to shorter treatment times and potential benefits in safety and quality of life

This review comprehensively compares conventional fractionation (CF), moderate hypofractionation (MHF), and ultra-hypofractionation (UHF)

Methods

Study Design: Systematic review and meta-analysis of randomised controlled trials (RCTs) Data Sources: Ovid MEDLINE, Embase, Cochrane Central, 1986–2023 Population: 20,237 patients across 35 RCTs


Fractionation Regimens:

CF: 50–50.4 Gy over 5–6 weeks MHF: 39–43 Gy over 3–5 weeks UHF: 26–30 Gy in 5 fractions over 1–5 weeks

Outcomes: Acute and late side effects, cosmesis, quality of life, recurrence, and survival

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Randomised controlled trials on radiation dose fractionation in breast cancer: systematic review and meta-analysis with emphasis on side effects and cosmesis

Shing Fung Lee,^{1,2} Samantha K F Kennedy,³ Saverio Caini,⁴ Henry C Y Wong,⁵ Pui Lam Yip,^{1,2,6} Philip M Poortmans,^{7,8} Icro Meattini,^{9,10} Orit Kaidar-Person,^{11,12,13} Abram Recht,¹⁴ Tarek Hijal,¹⁵ Mylin A Torres,¹⁶ Jeffrey Q Cao,¹⁷ Kimberly S Corbin,¹⁸ J Isabelle Choi,¹⁹ Wee Yao Koh,^{1,2} Jennifer Y Y Kwan,^{20,21} Irene Karam,^{21,22} Adrian W Chan,^{21,22} Edward Chow,^{21,22} Gustavo N Marta^{23,24,25}

Findings Acute Side Effects:

MHF vs. CF: Reduced grade ≥ 2 radiation dermatitis (RR 0.54; P<0.001) UHF vs. CF: Further reduction in dermatitis risk (RR 0.27; P<0.001)

Cosmetic Outcomes:

MHF associated with better outcomes compared to CF

UHF showed mixed results; higher doses linked to increased risks of fibrosis and shrinkage

Oncological Outcomes:

Similar survival and recurrence rates across CF, MHF, and UHF MHF offered disease-free survival benefits in specific regimens (HR 0.

Quality of Life:

MHF improved physical well-being and reduced fatigue compared to CF UHF demonstrated fewer functional declines in short-term follow-up

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Fractionation Schemes in Breast Cancer Radiotherapy Systematic Review and Meta-Analysis

).86;	P=0.	03)
,	I -0.	J

Fig 4 | Forest plot showing risk ratios for grade ≥2 acute radiation dermatitis for moderate versus conventional fractionation in breast conserving treatment trials. Cairo trial used RTOG toxicity criteria for acute radiation dermatitis. CF=conventional fractionation; CI=confidence interval; M-H=Mantel-Haenszel; MHF=moderate hypofractionation

	No of even	ts/total									
Study or subgroup	MHF	CF		ratio M-H Iom (95%						Weight (%)	Risk ratio M-H, random (95% Cl)
OCOG trial	9/73	28/73			♦					2.6	0.32 (0.16 to 0.63)
Cairo trial	6/15	9/15				,	_			2.2	0.67 (0.32 to 1.40)
BIG 3-07/TROG 07.01	207/777	390/831								63.8	0.57 (0.49 to 0.65)
Chinese trial	11/365	27/363			•	_				2.6	0.41 (0.20 to 0.80)
MD Anderson Cancer Center trial	50/138	103/149								19.9	0.52 (0.41 to 0.67)
Italy trial	9/120	25/120			•	-				2.3	0.36 (0.18 to 0.74)
Iran trial	5/45	9/41			•		-			1.2	0.51 (0.18 to 1.39)
Germany trial	19/70	30/70								5.5	0.63 (0.40 to 1.01)
Total (95% CI)	316/1603	621/1662			•					100.0	0.54 (0.49 to 0.61)
Test for heterogeneity: τ^2 =0.00; χ	² =5.52, df=7,	P=0.60; l ² =0%		1	I		1		1		
Test for overall effect: Z=10.87, P	<0.001		0.1	0.2	0.1	1	2		5	10	
			Favou	urs MHF				Fa	avours	CF	

Randomised controlled trials on radiation dose fractionation in breast cancer: systematic review and meta-analysis with emphasis on side effects and cosmesis

Shing Fung Lee,^{1,2} Samantha K F Kennedy,³ Saverio Caini,⁴ Henry C Y Wong,⁵ Pui Lam Yip,^{1,2,6} Philip M Poortmans,^{7,8} Icro Meattini,^{9,10} Orit Kaidar-Person,^{11,12,13} Abram Recht,¹⁴ Tarek Hijal,¹⁵ Mylin A Torres,¹⁶ Jeffrey Q Cao,¹⁷ Kimberly S Corbin,¹⁸ J Isabelle Choi,¹⁹ Wee Yao Koh,^{1,2} Jennifer Y Y Kwan,^{20,21} Irene Karam,^{21,22} Adrian W Chan,^{21,22} Edward Chow,^{21,22} Gustavo N Marta^{23,24,25}

Conclusions

MHF is a safer, more convenient alternative to CF, maintaining equivalent oncological outcomes

UHF offers similar efficacy, with the potential for further optimisation and longer follow-up to establish safety

Recommendations support MHF and UHF as preferred regimens in appropriate patient populations

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Fractionation Schemes in Breast Cancer Radiotherapy Systematic Review and Meta-Analysis

	No of even	ts/total									
Study or subgroup	MHF	CF		ratio M-H Iom (95%)						leight %)	
Beijing trial	14/401	32/409			•	-			1	3.5	-
Egypt trial	6/25	2/22			_		\		→ 3.	.9	
NRSMC trial	13/55	13/53				•			1	2.3	(
Bikaner trial	3/25	10/25	-						5.	.8	(
Assam trial	4/25	9/25			•				6	.9	(
Kolkata trial	2/120	5/102	-		•				3.	.4	(
India trial	27/47	52/54				_			2	3.4	(
Faridkot trial	2/30	7/30	-	¢					3.	.9	(
Rohtak trial	9/30	8/30				•			9.	.9	,
Rajasthan trial	21/50	20/50							1	7.1	,
Total (95% CI)	101/808	158/800							1	00.0	(
Test for heterogeneity: τ^2 =	0.10; χ²=16.32, df=	9, P=0.06; l²=45%	6	1	1		1	1			
Test for overall effect: Z=2.	40, P=0.02		0.1	0.2	0.1	1	2	5	10		
			Favo	urs MHF				Favou	urs CF		

Fig 5 | Forest plot showing risk ratios for grade ≥ 2 acute radiation dermatitis for moderate versus conventional fractionation in mastectomy trials. Beijing trial reported incidence of acute radiation dermatitis across grade 1–2 and 3; however, only grade 3 data have been included in this forest plot for analysis. Kolkata trial reported incidence of only grade ≥3 acute radiation dermatitis. CF=conventional fractionation; CI=confidence interval; M-H=Mantel-Haenszel; MHF=moderate hypofractionation

Risk ratio M-H, random (95% Cl)

0.45 (0.24 to 0.82) 2.64 (0.59 to 11.76) 0.96 (0.49 to 1.88) 0.30 (0.09 to 0.96) 0.44 (0.16 to 1.26) 0.34 (0.07 to 1.72) 0.60 (0.46 to 0.77) 0.29 (0.06 to 1.26) 1.13 (0.50 to 2.52) 1.05 (0.66 to 1.68) 0.68 (0.49 to 0.93)

Radiotherapy and Oncology 202 (2025) 110591

Contents lists available at ScienceDirect

journal homepage: www.thegreenjournal.com

Review Article

SEVIER

Dose constraints in breast cancer radiotherapy. A critical review

Fiorenza De Rose^{a,1}, Maria Carmen De Santis^{b,1}, Sara Lucidi^a, Riccardo Ray Colciago^{c,*}, Lorenza Marino^d, Francesca Cucciarelli^e, Eliana La Rocca^f, Francesca Di Pressa^g, Frank Lohr^{h,1}, Valentina Vanoni^a, Bruno Meduri⁸

^a Radiation Oncology, APSS, Trento, Italy

- ^b Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- ^c School of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
- ^a Servizio di Radioterapia, Humanitas Istituto Clinico Catanese, Misterbianco, CT, Italy
- ^e Radiotherapy Department, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
- ¹ Department of Radiation Oncology, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- ⁸ Department of Radiation Oncology, University Hospital of Modena, Modena, Italy
- h Proton Therapy Unit, APSS, Trento, Italy
- ¹ CISMED Centro Interdipartimentale di Scienze Mediche, University of Trento, Trento, Italy

ROMA 30-31 GENNAIO 2025

Radiotherapy and Oncology

De Rose F. et al. Radiotherapy and Oncology. 2024

Table 1

Lung dose constraints.

Organ at Risk	Conventional fractionation (2 Gy/fr)		Moderate hypofractionation (2.6–3.2 Gy/fr)		Ultra hypofraction (5.2 Gy/fr)	nation
Ipsilateral Lung	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Systematic review RTOG 1005 DBCG guidelines and trial protocol (Hypo trial) DBCG guidelines, RTOG 1304, Alliance A221505 SKAGEN trial <u>Alliance A221505</u> <u>SKAGEN trial</u> Systematic review	$\begin{array}{l} \underline{Breast/chest~wall} \\ V_{20Gy} < 10 \% \left([33,34] - \\ VMAT~treatment \right) \\ V_{17Gy} \leq 25 \% \left[28,29 \right] \\ \end{array} \\ V_{8Gy} \leq 35 \% \left(acceptable < \\ 40 \% \right) \left[31 \right] \\ V_{4Gy} \leq 50 \% \left(acceptable < \\ 55 \% \right) \left[31 \right] \\ MLD < 10-16 ~Gy \left([29,33,34] \right) \\ - ~VMAT~treatment \right) \\ \underline{Breast/chest~wall~and~RLN} \\ V_{18Gy} \leq 35 \% \left[36 \right] \\ V_{17Gy} \leq 35 \% \left[36 \right] \\ \end{array}$	Phase II Trial DBCG guidelines and trial protocol (Hypo trial) RTOG 1005 Trial protocol (Hypo trial) Phase II Trial RTOG 1304 SKAGEN trial	V _{8Gy} < 15 % [35]	Phase III Trial
Contralateral Lung	$\begin{array}{l} \textit{Breast/chest wall} \\ V_{5Gy} \leq 10 \ \% \ (acceptable < 15 \ \%) \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	QUANTEC, RTOG 1005, RTOG 1304, Alliance A221505 RTOG 1304	Breast/chest wall $V_{4Gy} \le 10$ % (acceptable < 15 %) [30,31] Breast/chest wall and RLN $V_{4,8Gy} \le 10$ % (acceptable < 15 %) [38]	ASTRO guidelines, RTOG 1005 Alliance A221505	Not available	
Lungs	Breast/chest wall MLD \leq 6 Gy [27]	Systematic review	Not available		Not available	2

MLD: mean lung dose; 3DCRT: three-dimensional conformal radiotherapy; IMRT: Intensity-modulated radiotherapy; RLN: regional lymph nodes. Doses reported for hypofractionation (moderate or ultra) are not EQD2 if not specified.

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

De Rose F. et al. Radiotherapy and Oncology. 2024

Table 2

Heart and cardiac substructure dose constraints.

Organ at risk	Conventional fractionation (2 Gy/fr)		Moderate hypofra (2.6-3.2 Gy/fr)	actionation	Ultra hypofractionation (5.2 Gy/fr)	j.
Heart	<u>Breast/chest wall</u> V _{20Gy} ≤ 5 % [31,61]	Original scientific article, trial protocol (RTOG1005)	<u>Breast/chest</u> <u>wall</u> V17Gy ≤ 5 % [61]	Original scientific article, trial protocol (RTOG1005)	V _{7Gy} < 5 % (3DCRT) [35] V _{1.5Gy} < 30 % (3DCRT) [35]	<u>Original</u> scientific article
	$V_{40Gy} \le 1$ % [61] $D_{mean} 2.5 \text{ Gy}^{+}$	Original scientific article, DEGRO guidelines, trial protocol (RTOG1005)	$\begin{array}{l} V_{\rm 25Gy} \leq 1~\% \\ [61] \\ D_{\rm mean} < 3.2~Gy \end{array}$		Not available for IMRT and VMAT	
	(optimal) [57,60] D _{mean} < 4 Gy [31]		[31]			
	Breast/chest wall and RLN V _{20Gy} ≤ 10 % [61]	Original scientific article, trial protocol (RTOG 1304)	Breast/chest wall and RLN	Original scientific article		
	$V_{40Gy} \le 5 \% [61]$		V17Gy ≤ 10 % [61]			
	D _{mean} < 5 Gy [36] *With DIBH		V _{35Gy} ≤ 5 % [61]			
LADCA	Dmax < 20 Gy [60] Dmax < 45 Gy*[58] Dmean < 10 Gy [29] V30Gy < 2 % [29] V40Gy < 1 % [29]	DEGRO guidelines, Original scientific article, Trial protocol (Hypo trial)	D _{max} < 17 Gy [61]	Original scientific article		
	related toxicity cannot of both muscle and LAI heart is not perfect, it s anterior heart – thus a	eath; as, however, LAD-related and muscle- yet reliably be separated, as the dimension 0 is small, and as positioning of the anterior eems prudent to keep maximum dose to the lso dose to the LAD – in any case « 30 Gy, hed recommendations for anterior heart ble				
LV	$\begin{array}{l} D_{mean} < 3 \ Gy \ [56] \\ D_{mean} < 4.5 \ Gy \ [57] \\ V_{5Gy} < 17 \ \% \ [55] \\ V_{23Gy} < 5 \ \% \ [29] \end{array}$	Original scientific articles, Trial protocol (Hypo trial)				

LADCA: Left Anterior Descendent Coronary artery; LV: Left Ventricle; 3DCRT: three-dimensional conformal radiotherapy; IMRT: Intensity-modulated radiotherapy; VMAT: volumetric-modulated arc therapy; Dmax: Maximum dose; Dmean: Mean dose; RT: radiation-therapy. Doses reported for hypofractionation (moderate or ultra) are not EQD2 if not specified. De Rose F. et al. Radiotherapy and Oncology. 2024

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Table 3

Contralateral Breast dose constraints.

Organ at risk	Conventional fractionation (2 Gy/fr)	Moderate hypofractionation (2.6–3.2 Gy/fr)	Ultra hypofractionati (5.2 Gy/fr)
Contralateral Breast	ALARA [30,61,67]	ALARA [30,61,67]	Not available
	$D_{5\%} \le 1.86 \text{ Gy}$ (RNI -) [31,38] $D_{10\%} \le 3 \text{ Gy}$ (RNI +) [31,38] $V_{4Gy} < 10\%$ [68] $D_{mean} < 4 \text{ Gy}$ [68]	D _{5%} ≤1.44 Gy (RNI −) [31,38] D _{10%} ≤3 Gy (RNI +) [31,38] D _{mean} < 3 Gy [34]	

ALARA: As Low As Reasonably Achievable; Dmean: mean dose; Dmax: Maximum dose; D_{0.1cc}: Dose to 0.1 cc of volume; RNI: regional nodes irradiation; Doses reported for hypofractionation (moderate or ultra) are not EQD2 if not specified.

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Table 4

Dose constraints for other OARs routinely involved in breast locoregional treatment.

Organ at risk	Conventional fractionation (2Gy/fr)	Moderate hypofractionation (2.6-2.9 Gy/fr)	Ultra hypofractionation (5.2 Gy/fr)
Brachial Plexus	Dmax \leq 54 Gy [14] V _{40Gy} $<$ 13.5cm ³ [85]	Dmax 46.25 Gy [39]	Not available
Humeral Head	V _{50Gy} < 90% [86] ALARA	ALARA	Not available
Esophagus	Dmean ≤ 11 Gy, $V_{10Gy} \leq 30\%$, $V_{20Gy} \leq 15\%[87]^{\circ}$ $^{(when contoured)}$ along the entire length) Dmean ≤ 31 Gy [88]^{\circ} $^{\circ}$ (when contoured) from the superior to the inferior border of the supraclavicular PTV)	V _{25Gy} < 20% and V _{35Gy} < 0,27 mL [89]* *(when contoured from the lower border level of the cricoid cartilage to the lower margin of the aortic arch)	Not available
Liver	Dmean ≤ 3 Gy (left breast) [90] Dmean ≤ 4 Gy (right breast) [90]	Dmean ≤ 3 Gy(left breast) , Dmean ≤ 4 Gy (right breast) [90]	Not available
Thyroid	V _{30Gy} < 50% [91] Dmean < 21 Gy [92]	Dmean < 21 Gy [93]	Not available
Chest Wall	D2cc ≤ 52 Gy [94]	$D_{2cc} \le 52 \text{ Gy}_{BQD2}$ [94]	Not available
Spinal Cord	Dmax ≤ 45 Gy (optimal) [95] Dmax <50 Gy (mandatory) [95]	Dmax ≤ 37.8 Gy (optimal) [96] Dmax < 42 Gy (mandatory) [96]	Not available

ALARA: As Low As Reasonably Achievable; Dmean: mean dose; Dmax: Maximum dose; Doses reported for hypofractionation (moderate or ultra) are not EQD2 if not specified.

De Rose F. et al. Radiotherapy and Oncology. 2024

ion

Thank you to my colleagues!!!

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

ROMA 30-31 GENNAIO 2025

Update degli Studi Practice Changing 2024

Thank you for the attention

